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There are three independent possibilities to treat the problem of glass 
formation: 

1. Pure structural 
2. Bound strength 
3. Kinetic Criteria 

 
STRUCTURAL (GEOMETRIC) APPROACHES 

 

In 1912 Goldschmidt formulated a rule according to which for 
glassformers 
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There are many compositions for which this rule is fulfilled and are not 
glassformers (BeO, most of the halides).  
 
All ionic  glassformers satisfy this rule. This means that this equation is the 
condition that for glassformers anions are arranged in tetrahedral 
positions around the cations. 
 

 Zachariasen Random Network Theory 
 glass-formers are cations that have high valences (>2) and can create 
three dimensional networks of tetrahedra, which interconnect by 
corners; not by edges or faces. In the case of silicate, borate and 
phosphate glasses the networks are formed by the polymerization of 
polyhedra. 

Network Formers :   SiO2, GeO2, P2O5, As2O3 etc. 
 
Network Modifiers : 
 
  Bridging  CaO, ZnO, MgO  etc. 
  Non Bridging   Na2O, Li2O etc. 
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Alkali modifiers fit into relatively large holes in the tetrahedral network.  
Modifiers are large ions with low charge  Na+, K+, Cs+, Zn2+, Pb2+ etc.  
 
 

Close packing of spheres of equal size 
 

symmetry Z δδ  
Hexagonal 12 0.74 
Tetragonal 10 0.70 
Cubic volume centered 8 0.68 
Simple cubic 6 0.52 
Cubic diamond like 4 0.34 

 
 
Existence of spheres of different size increases the close packing 
 
 
 
 
 

BOUND   STRENGTH   MODELS 
 
The stronger the bounds in the melts the more sluggish will be the 
rearrangement process. 
 Rawson – He takes a quite realistic quantity – the ration of the bound 
strength to kTm     
 Up to here the models do not consider the importance of the cooling 
rate.  Both approaches assume that substances can be divided to glass forming 
and crystallizing. 
 
 

NETWORK  RIGIDITY APPROACH 
 

According to Thorpe the network switches from floppy to rigid if the number 

of solid bridges between the network formers exceeds a certain threshold 

value. The kinetics of phase transition (and most the nucleation processes) is 

very sensitive to the rigidity of the network. Slightly above the threshold 
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concentration of rigid bonds some tiny floppy regions still exist inside the 

rigid network. They can serve as active centers for the nucleation process. 

Much later, nucleation can appear in the rigid part of the network. Therefore, a 

certain interval of concentration of rigid bonds in which a bimodal size 

distribution function of the crystalline particles will be observed. This is 

confirmed by experimental data. 

 
Two sources of constraints are involved. One is generated by the fixed length of the 

bridges connecting NF (bridge stretching constraints BC). There is one BC constraint 
associated with each bridge. Therefore, the average number ml of BC per node is   

   
2
r

m l =       

 

The fixed angle between bridges give rise to the second sort of constraints (bridge bending 
constraints BB). For r coordinated node, the number of           
                       

       mb = 2r-3        
 

bending constraints is mb The overall constraints number is the sum  
m = ml + mb.  

The degrees of freedom (per node) is equal to the dimension d of the space. Every 
constraint disables one degree of freedom. Therefore, the fraction f  of  enabled degrees of 
freedom is given [5] as: 
 

                       f = d + 3 – 2.5 < r >    
 

It is seen that <rcr> is the average number of constraining bonds per NF at 
which f = 0. For a three dimensional network: <rcr> = 2.4 
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 GLASS  FORMING  ABILITY  

– accounts for the ease by which melts can be cooled to form glasses. 

  Critical Cooling  Rate   qc  
 
 
 GLASS  STABILITY   
- accounts for the resistance of glasses towards devitrification upon reheating 
 
 

Hruby  Parameter 
 

crm

gcr
H T-T

T-T
K =  

 
 
 
 
 

KINETIC    APPROACH 
 

• Tammann  - Glasses are formed when nucleation vs temperature curve 
does not overlap with the growth rate vs temperature curve 

• Dietzel – Crystallization stability depends on the crystal growth rate G 
• Turnbull – Determines the kinetic stability in cooling experiments 

through the steady state nucleation rate Jo 
• Gutzow – relates the glass stability to the non-steady-state time lag 

 
 
Tammann model is still on a qualitative level.  Every of other three 
approaches assumes that one of the three parameters is dominant and 
completely neglects the other two.  
 
 Uhlmann – formulated a criterion for vitrification based on the 
synthesis of nucleation and growth via the kinetics of overall crystallization 
(Equation of Kolmogorof – Avrami). 
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Temperature – Time – Transformation  ( TTT ) curves 
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at isothermal conditions, for J=const and G=const’  
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The time necessary to reach a given degree of crystallinity is: 
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If there is considerable induction time τc 
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When T is changing G,J and τc change too. The  relationship between T and tx 
is known as:       TTT Temperature   Time  Transformation       curves 
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Weinberg Model 
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Critical cooling rate could be very different from 
the Critical Heating rate! 
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When  
R

Sm∆  increases  G(T) and J(T)  curves are separating 
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Crystallization rate: 
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here E  ∞∞   is the shear modulus at high frequencies..  E  ∞∞ ~1010 Pa. 
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Nucleation rate: 
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V I S C O S I T Y 
 
 

Vogel-Fulcher-Tammann equation     
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Adam and Gibbs  assumed that the barrier to rearrangement is proportional to 
n, and determined the temperature dependence of n in terms of the 
configurational entropy, ∆S . Their result for the viscosity is 
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 where w* is the number of configurations available to the smallest group of 
atoms that can undergo a cooperative rearrangement (w*~2).  
 
 
 
 
While in crystal the building units (hereafter referred as molecules) meet always the same 
barrier, there is a more or less broad distribution in amorphous state. The average jump 
frequency is determined by  
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Let Tg is the temperature at which viscosity is:  
 lgηη ( Tg)≡≡  lgηη g=12.5 Pa.s 

 
 

Vogel-Fulcher-Tammann equation     
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