Information From Differential Scanning Calorimetry

The goal is to find two parameters, which, when plotted one against the other, will result in a straight line. From the slope of such a line, some important parameters of the process could be calculated (for instance the overall effective activation energy E or the order of reaction n).

The fraction crystallized α in terms of nucleation rate J and crystal growth rate G is:

$$
\begin{equation*}
\alpha=1-\exp \left[-g \int_{o}^{t} J_{o}\left(\int_{t^{\prime}}^{t} G d \tau\right)^{m} d t^{\prime}\right] \tag{1}
\end{equation*}
$$

For interface-controlled growth or diffusion controlled growth with G independent of time, $m=1,2$ and 3 depending on the dimension of growth. For diffusion controlled growth where $G \sim t^{-1 / 2} m=1 / 2,1,3 / 2 .+1$

For anisotropic growth $\prod_{i} \int_{i} d \tau_{i}$
For constant J, G

$$
\begin{align*}
& \alpha=1-\exp \left(-g J_{o} G^{m} t^{n}\right), n=m+1 \\
& \alpha=1-\exp \left[-K t^{n}\right] \tag{2}\\
& K=K_{o} \exp \left(-\frac{E}{R T}\right)
\end{align*}
$$

In general neither the activation energy E_{N} nor the activation energy for linear crystallization E_{G} are constant. As the process takes place in a narrow temperature region they are taken as effective values in this region.

$$
E=E_{n}+m E_{G}
$$

Interpretations of results:

$$
T=T_{o}+q t
$$

Ozawa method to determine n

$$
\begin{equation*}
\alpha=1-\exp \left[-K\left(\frac{T-T_{o}}{q}\right)^{n}\right] \tag{3}
\end{equation*}
$$

Taking twice the logarithm

$$
\left.\frac{d[\ln (-\ln (1-\alpha))]}{d \ln q}\right|_{T}=-n \quad \text { Here } \quad \alpha \text { is obtained at the same }
$$

temperature from a number of crystallization experiments taken at different heating rates.

All other methods involve as a first step differentiation of eq.(2) with respect to time

Piloyan-Borchardt

$$
\begin{align*}
& \dot{\alpha}=(1-\alpha) n K t^{m}\left(1+\frac{\dot{K}}{K}\right) \tag{4}\\
& \dot{K}=\frac{d K}{d T} \frac{d T}{d t}=q \frac{d}{d T}\left[K_{o} \exp \left(-\frac{E}{R T}\right)\right]=\frac{q E K_{o}}{R T^{2}} \exp \left(-\frac{E}{R T}\right) \tag{5}
\end{align*}
$$

$\dot{\alpha}=(l-\alpha) n K t^{m}(l+b t) \quad ; \quad b=\frac{q E}{R T^{2}}$

If $T_{o} \ll T$ than $a \approx E / R T$
assumption !!?? $E / R T \ll 1$!!??

$$
\dot{\alpha} \approx(1-\alpha) n K t^{m}
$$

Dependence of \dot{X} on $\boldsymbol{\alpha}$ and t

assumption: It is possible to define

$$
\dot{\alpha}=k(x) h(T)
$$

The time can be expressed in terms of α as:

$$
t=\left[\frac{-\ln (1-\alpha)}{K}\right]^{1 / n} \quad ; \quad t=\frac{T-T_{o}}{q}
$$

Coats-Redfern-Sestak method determines activation energy
Assumes that $k(\alpha)=(1-\alpha)^{n}$
from $\dot{\alpha}=k(\alpha) K_{o} e^{-\frac{E}{R T}}$
by rearranging the above expression and integrating
$\int_{0}^{X^{\prime}} \frac{d \boldsymbol{\alpha}}{k(\boldsymbol{\alpha})}=K_{o}^{t_{0}^{\prime}} \int_{0}^{-\frac{E}{R T}} d t \equiv U\left(\boldsymbol{\alpha}^{\prime}\right) \quad$ The function $U\left(\boldsymbol{\alpha}^{\prime}\right)$ is independent on the heating rate used to obtain the crystallized fraction α^{\prime}
The time integral is transformed to temperature integral

$$
\begin{equation*}
U\left(\alpha^{\prime}\right)=\frac{K_{o}}{q} \int_{T_{o}}^{T^{\prime \prime}} e^{-\frac{E}{R T}} d T=\frac{K_{o} E}{R q} \int_{y_{o}}^{y^{\prime \prime}} \frac{e^{-y}}{y^{2}} d y ; y=\frac{E}{R T} \tag{*}
\end{equation*}
$$

If we start at $T_{o} \ll T^{\prime}$ (below T_{g} so that no crystallization takes place in this region we may assume $T_{o} \rightarrow 0$, i.e. $y_{o}=\infty$
Exponent integral function

$$
\int \frac{e^{-y}}{y^{2}} d y=-\frac{e^{-y}}{y}+E i(y)
$$

$$
\begin{aligned}
& E_{i}(y)=\frac{e^{-y}}{y}\left(1-\frac{1!}{y}+\frac{2!}{y^{2}} \ldots+\frac{(-1)^{n} n!}{y^{n}}\right) \\
& E i(y)=-\gamma-\ln y+\left(\frac{y}{1.1!}-\frac{y^{2}}{2.2!}+\frac{y^{3}}{3.3!}-\ldots\right) \quad, \gamma=0.5772
\end{aligned}
$$

for $y^{\prime} \gg 1$ the integral $\left(^{*}\right)$ becomes

$$
\int_{\infty}^{y^{\prime}} \frac{e^{-y}}{y^{2}} d y \approx-\frac{e^{-y^{\prime 2}}}{y^{\prime 2}}
$$

$$
\text { If } \quad k(\boldsymbol{\alpha}) \approx(1-\boldsymbol{\alpha})[-\ln (1-\boldsymbol{\alpha})]^{\frac{n-1}{n}}
$$

then $\quad U\left(\alpha^{\prime}\right)=\left[-\ln \left(1-\alpha^{\prime}\right)\right]^{1 / n}=\frac{K_{o} R T^{\prime 2}}{E q} e^{-\frac{E}{R T^{\prime}}}$

Essential is that for a given $\alpha^{\prime}, U\left(\alpha^{\prime}\right)=$ const

$$
\begin{aligned}
& \frac{K_{o} R T^{\prime 2}}{E q} e^{-\frac{E}{R T}}=\text { const } \\
& \ln \frac{T^{\prime 2}}{q}-\frac{E}{R T^{\prime}}=\text { Const } \quad \text { This is known as Ozawa-Chen method }
\end{aligned}
$$

Ozawa used a simpler approximation and find coordinates
ln q against $1 / T$ '.
If a fixed α ' is determined in a series of exotherms at different heating rates, the plot of $\ln T^{2 / 2} / q v s 1 / T^{\prime}$ should be a straight line with a slope E / R.

Derivation of Coats-Sestac-Redfern for E/RT >> 1

From Eq. ${ }^{(* * *)}$, since $q t / T \sim 1$

$$
\begin{aligned}
& \dot{\alpha}=(1-\alpha) n K t^{m} \frac{q E}{R T^{2}} \\
& \int_{0}^{x^{\prime}} \frac{d \alpha}{(1-\alpha) \ln (1-\alpha)}=\ln [-\ln (1-\alpha)]=\frac{E}{R} \int_{0}^{T^{\prime}} \frac{d T}{T^{2}}=-\frac{E}{R T^{\prime}}
\end{aligned}
$$

Bennet has shown that at temperature of the peak T_{p} the degree of transformation $\alpha_{p} \approx 0.63$ DOES NOT DEPEND ON HEATING RATE OR THE ORDER OF THE REACTION

$$
\alpha(t)=1-\exp \left\{-c_{g} \int_{0}^{t} J\left(t^{\prime}\right)\left[\int_{0}^{t-t^{\prime}} G\left(t^{\prime \prime}\right) d t^{\prime \prime}\right]^{d} d t^{\prime}\right\}
$$

This is the evolution of the crystallized fraction of the volume. It is controlled by two basic parameters - the crystallite nucleation and growth rates J and G

Growth	Shape	c_{g}
$1 D$	Needle	$2 A_{o}$
$2 D$	Disk	πH_{o}
$2 D$	Square prism	$4 H_{o}$
$3 D$	Sphere	$4 \pi / 3$
$3 D$	cube	8

A_{o} - constant cross section area of needle; H_{o} constant thickness of the prism
H. Yinnon, D. Uhlmann, J. Non Cryst Sol. 54 (1983) 253

