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SUMMARY

The paper addresses the properties of glassforming melts in an attempt to predict the dependence of
viscosty on temperature and on pressure. A review on the main viscosity modds (free volume
modd, the Adam & Gibbs modd etc.) is given. It is demongtrated that the activation energy can be
expressed through the glass trandtion temperature Ty The main attention is concentrated on the
jump frequency model of Avramov & Milchev, the AM modd. According to it, viscodty h
depends on the entropy S of the system and through it on temperature and on pressure. The viscosity
. e A Py .
equation h(P,T)=h, exp@.3(135- Igh, )g 22 '> (, deived in the framework of this
& 2

approach, describes the plethora of experimental data, summarized in the article, with an accuracy,
superior to that of the other models. It is demondgirated that the fragility power a depends on heat
capacity. Therefore, the composition dependence of a isin agreement with Deby-Neumann law.

1. Introduction

Viscogity, or the interna friction during the mation of liquid, appears because various layers
flow with different velocities and glide with respect to each other. Due to the attractive forces, the
faster moving layers tend to carry with them the layers, which move at lower reate. In this way a
friction between the adjacent layers appears, giving rise to irreversble converson of a part of the
energy of motion to hest, i.e. to disspation of energy.

For a laminar flow, the Newton's law relates the frictiona force f the surface undergoing
friction A and the velocity gradient du/dx in direction perpendicular to flow direction through
viscosity coefficient h asfollows.

f =hadY (1)
dx
where h the dynamic viscosity is measured in [Pas] units, more popular is the old unity [Poise] =
[dPag]. There is no time in Thermodynamics, therefore viscosity cannot be a pure thermodynamic
variable and cannot be determined by pure thermodynamic methods, instead of this it is aways
determined in the framework of certain moddls. This rule is vdid dso for diffuson coefficients, for
characterigtic times etc. The use of models leads to some uncertainty. Thus, at least one order of
magnitude difference gppears between particular expressons relating viscosity, diffuson coefficient



and relaxation time. According to Stokes the friction coefficient F of particle of diameter d is related
to viscosity as.
F =3pdh 2
This equation gives the background for experimenta determination of absolute vaue of
viscogty. The sdf-diffuson coefficdent D can be derived conddering diffuson of molecules as a
particular case of Brownian maotion. Applying the Eingein’s approach [1] the following relation is
obtained
D= KeT ©)
3pd h
where d, is the Sze of the building unit and kg is Boltzmann congtant. Hereafter we cdll the building
units respongible for the motion “molecules’, athough grictly spesking, they could be sometimes
different from molecules in chemidiry notation. The absolute rate [2] theory gives.
kT
D=-8 4
ah (4)
Smilarity between Egs.(3 and 4) is evident. However, the two models predict about one order of
magnitude difference in the vaue of the sdf-diffuson coefficient. Further, one can use the Eingein's
relation, connecting the mean square displacement and time

X? = 2Dt (5)
to determine the Frenkd’ stime [3] tr for the average displacement to distance d, of one molecule
2
D= d_o (6)
t R

The relationship between Frenkd’ stime and viscosity is easily obtained combining Eqgs.(3, 6)

k. T RT
h= s “3ov i )
where Ristheided gas congart and Vy, isthe molar volume. A smilar result
KT RT
h= dB‘?’tR:V_tR (8)

isobtained if Eq.(4) is used instead of Eq.(3). It isacommon assumption that relaxation proceeds as
spatia rearrangement of molecules. Therefore, it is supposed that Frenkd’s time is equivaent to
relaxation time.

Maxwell law establishes relation between tr and h through the dagticity modulus G as

h=Gtg 9)

It is not clear what is dadticity modulus of a liquid. The experimenta data on solid glassy sate near
the glass-trangition temperature Ty give for adticity modulus
Gy ~10°[Pq]. (10)

The vaue of ;E is about 10® Pa. So, a discrepancy of about two orders of magnitude appears

m

between the expected va ues of ;ﬂ and G y. It seems, thisisbecause G ¢ of theliquid islower than

m

that of the glass. Some typical viscosity vaues (see for indance Ref.[4]) are listed in Table 1 and
compared to relaxation time.



Table 1. viscosity of some substances (see[4])

Substance Viscodty hin [dPasg] Rdaxationtimet in[g

Air a room temperature 2.10"

Water a room temperature 102

Motor Oil at room temperature | 10

Honey 10

Andesite Lava 10" to 10°

Rhyolite Lava 10*to 10"

Glass working point 10*

Glass flow point 10°

Glass softening point 10"°

Glass dilatometric  softening | 102

point

annedling point 10% 15min=900s

Glass a  glasstrangtion | 10™%° 100 min=610°s

temperature

Glass strain point 10*° 15h »5.4 10* [¢ (initid
granisrelaxed to 10%)

Solid like behaviour >10"

According to Table 1 the value of tﬂ varies between 5.10° and 10° [Pg]. To summarize: viscosity

R
is proportiond to relaxation time

h=Gt, (11)

where the proportiondity coefficient G, varying between 10% and 10° [Pa], is determined by
different models as follows:

m

, absolute ratetheory mod € (12)

G,, Maxwell's mod €l

Equation (11) reflects the fird st of models in determining the reaionship between the
thermodynamic variables and viscodity. As soon as the time tr depends on thermodynamic variables
(like temperature T and pressure P) much stronger then G, a second set of models is needed in
determining tr while G is assumed a constant.

2. The temper atur e dependence of viscosity

The mode coupling theory [5-9] reveds the influence of the dendty fluctuations modes on
viscosty. The motion of a particle transfers some energy to be redistributed among the surrounding



particles. It results in a dengity fluctuation modes with a given wave vector. The dengity correlation
function F(t) is determined by the equation of motion

F +WF +vvztc‘)n(t-t')F' (t)d =0 (13)

where Wis frequency. The memory kernd m(t) reflects the collective effects arisng from the
cooperative maotion of a particle and its surrounding. Some prove of the modd comes from the
molecular dynamic smulation of Roe [10]. He investigates the short time motion in polymer glass
forming liquid. Unlike the smal molecule liquids, no hopping is observed in this case.

Although the mode-coupling theory predicts properly the occurrence of the glass trangition it
ill has long way to go in order to be become applicable in quantitative description. More successful
are models congdering viscosity as athermally activated process, i.e. its temperature dependence is
given [2] by the expression:

h=h, expE 9
¥ engRT Qj (14)

Viscosty of glass-forming mets increases sharply when temperature T decreases. If the
activation energy E of the viscous flow is temperature independent, the experimenta data should give
a draght line when plotted in Arrhenius coordinates, Ig h vs 1/T. An example (according to
Mazurin at a [11]) is shown in Fig.(1) for viscosty of a sandard soda-lime silicate glass NBS710.
Solid points represent equilibrium viscosity. Non-equilibrium viscosty, measured below the glass-
trangtion temperature is given by the open points. If sample is annedled long time, viscosty steadily
increases from that of the open points towards that of the solid points. Two important features are
readily seen: first, below the glass trangtion temperature there gppears a pronounced difference in
the viscosity behavior of the nortequilibrium system and second: the experimenta point do not give
in Arrhenius coordinates a draight line even for equilibrium system. Therefore, one has to assume
that, in genera, the activation energy depends on temperature

E=E(T) (15)

It seems that most of the contemporary models [8,9,12- 14] are devoted to determination of
the temperature dependence of the average vaue of the activation energy. Authors proposed a
number of equations for the temperature dependence of viscosity. The best of them have three
adjustable parameters, two of which are used to adjust E(T) while the third one is for the
preexponential congtant hy.

One of the best known expressions is the empirica equation of Voge-Fulcher —Tammann
(VFT):

& B 0

h=h, ex T 16
T 49

It is capable to describe viscodity data, varying over 10 orders of magnitude, with accuracy better
then 10%. A smilar expression is known, in polymer science, as equation of Williams-Landd-Ferry
with an “universal” congtant characterigtic of the activation energy for chain motion (reptation) in
the mdt 6.280 kJ/mol and Ty » Ty — 50K. It is well known [15,16] thet a Sngle VFT equation
cannot accurately describe viscodty at dl temperatures. According to this equation, viscosty
diverges for temperatures gpproaching Ty. Although viscosty is certainly finite, this is a minor
problem because at low temperatures viscodity is very high and out of practica interest.



Cohen and Turnbull [12] developed the “free volume” modd according to which the flow
occurs by motion of molecules into some voids. Within certain gpproximetion this approach leads to
Eq.(16).

Macedo and Litovitz [13] determine the average activation energy from the probability of
forming a hole. The vaues of parameters needed to fit the viscodty data were found [17] to be
unreligtic.

It is logicd to condder the motion as a cooperative process involving a smultaneous
rearrangement of a large number of molecules. The Adam-Gibbs model [14] is based on the idea
that motion occurs by interna cooperative rearrangement of independent regions of n molecules.
When temperature decreases, the motion of one molecule disturbs an increasingly larger number n of
its neighbors. Adam and Gibbs (AG modd) assumes tha the barier of rearrangement is
proportional to n, and determined the temperature dependence of n in terms of the configurationa
entropy, D5 asfollows.

@B 0o
h=h, exgt—= 17
Y ETB g 1)
i.e. (see Egs.(14,15) —( ) =—

Although the Adam-Gibbs modd fits wel alarge number of viscosty data on glassforming mdlts, it
falsfor others[9].

To move, the building units meet dways the same activation energy barrier in the perfect
crystd. In amorphous state there is a more or less broad digtribution of the activation energy heights
E. We dready mentioned that motion occurs by cooperative rearrangement of severd molecules. It
seems that this is the reason why most of the models of viscosty determine the average vaue of the
activation energy for a given st of parameters T, P, etc. However, this is a fdlacy because the
average jump frequency is not determined by the average vaue of the activation energy.

The Avramov & Milchev [18-21] modd (AM mode) determines the temperature
dependence of the average jump frequency of molecules and, through it, the viscosity. For the details
of the modd see Appendix 1. The main assumption is that, because of the exigting disorder, the
activation energy barriers of different height appear. The width ,s, of the digtribution function barriers
heights depends on entropy. Therefore viscodity is afunction of entropy S of the system according to
equation

igh=Igh, +§g 2—3 exper ME (18)
v @ e R
where a certain reference state is denoted with subscript g. We choose as reference state the glass
trangtion temperature Tg. It is well known that the experimentally determined glass transition
temperature depends on the measured property as well as on the heeting (or cooling) rate. Here, for
T, , We adopt the temperature at which viscosity is hy=10"*° [dPa.s]. Therefore, in Eq.(18) S is
the equilibrium entropy & Ty while Z/2 is the number of escape channdls available for the moving
particle. Note that Ty is dways in the glass-trangtion interval and, therefore, it has a value close to
theat of the experimentdly determined glass-trangtion temperature (within £2% of accuracy).
Equation (18) relates viscosity to the entropy of the systlem. Unlike most of the recent gpproaches
(see [20-22] and literature cited there) h depends on the whole ertropy, not on the configuration
entropy only. Therefore, the viscosity does not diverge at the Kauzmann temperature Ty, dthough it
is becoming extremey high. Eq.(18) is a double exponentid function on entropy. This quite



unpleasant Stuation, is surmounted by taking into account that entropy is a logarithmic function on
temperature. Therefore the temperature dependence of equilibrium viscosty (see Attachment 1) is
given by
é AU
h=h, epé.3135- Igh, ) ?—92 G (19)
A T g H
where the "fragility” parameter a in Sandsfor:
2C,
ZR

a=

(20)

z N h
€ J U pits Notethat lg— =135- Igh,

&K .mol h,

Here C,, isthe average molar heat capacity in

3. Activation energy and glass-trangtion temperature.

The main advantage in defining T, asthe temperature a which hy,=10"° [dPa.g] isthat the
activetion energy E(Tg) is a smple function of Tg. Thus, from the genera expresson given by
Egs.(14,15) one obtains

E(T,)=23(135- Igh, )RT, (21)

Equation (21) permits to resolve only the value of activation energy a T,. Determination of
the activation energy in the whole temperature range requires a detailled mode of viscosty, for
ingdance this is possble usng one of the VFT, AG or AM approaches. On the other hand, Eq.(21)
is vaid for dl these models since they are particular cases of Egs.(14,15). This permits us to
determine, in terms of T,, both the temperature dependence of the activation energy and the
temperature function of viscogity. In the case of the VFT equation(16) they are:

E(T)=23(135- Ig h¥)TTg TT¥

¥

RT 22)

_ ] T,- T,
lgh =Igh, +2.3(13.5 Igh¥)_|_ T (23)
T ly

In the case of the AG modd (Eq.(17)) the corresponding expressions become:

InT—g
E(T)=2.3(135- Igh¥)Tf;_§g RT =2.3(135- Igh¥)| Ef ; (24)
T
respectively
e T, 60
% 7,056 ¢ 3, & "
h=h, expg 3(135- Igh,) = §=h¥ expg2.3(13.5- Igh, ) T (25)

INn—+=+
: T a5
In the case of the AM mode!, Eq.(19) gave dready the temperature dependence of viscosity in Ty
terms. Asfor the activation energy, it becomes



a

E(T)=2.3(135- |gh¥)§%9% RT (26)
4]

Note that Eq.(19) dways describe the experimenta data with equa or superior accuracy as
compared to Egs.(23,25) (see for instance [23]).

Empiricdly, Angel a a separate glasses to strong one and fragile one (see for ingtance
[24]). The “ strong” glasses do not change structure with increasing temperature. Therefore, these
systems have relatively low heat capacity and the activation energy for viscous flow is not sendtive to
temperature changes. On the other Sde are “fragile’ glasses with a “ week” sructure that easily
changes with temperature. They have high heat capacity and the activation energy changes with
temperature. To account for the fragility the authors [24] formulated the steepnessindex or fragility

index m asfollows
dlogh
m= 2
dTg /T . 7

g

It is a popular fdlacy that the activation energy in the glass trandtion region can be
determined experimentdly as equd to E(Tg)'= mRT , because the dope m depends on E(T) aswell

ason itsfirg derivative q Tﬂ/T E(T) . Thusin the case of AM modd, Eq.(19), thedopemis
9

m=a23(13.5- Igh, ) (28)

A comparison with Eq. (21) (see dso Eq.(26)) yidds

efr,)= "2

(29)

3. Viscosity of nonequilibrium systems

In the glass-trandtion region the experimenta time scae becomes comparable with the time
scale for structurd rearrangements. The relaxation time increases sharply upon further cooling. In this
way, the dructure is fixed so that the system turns into a nonequilibrium date. Therefore, an
additiond internal parameter is needed to describe it. For this reason Tool and Eichlin [25]
introduced the so-caled "fictive' or "dructurd” temperature T;. Thisis the temperature a which the
system with a given structure will be in equilibrium. At temperatures lower then T the configurationd
entropy DB isfixed (i.e. the configurational part DC,, of the heet capacity vanishes)

Egs.(17,18) give the dependence of viscosty on the entropy. Therefore, both the AG
goproach as wdl as the jump frequency AM mode are capable to describe the temperature
dependence of viscosity of both equilibrium and nonequilibrium glasses (see Fig.1).

Badcdly, the entropy of undercooled mdts splits into two parts: configuration entropy 5,
and vibration entropy Siinr. Respectively, the hest capacity of undercooled meltsis C, = DC,, + Cy.
According to Eq.(17) in Arrhenius coordinates the dope L. of log h agang 1T is

L = B a:eH D:pg
¢ 2.3[:8% L5 5

(30)



If configurationd entropy is fixed the nonequilibrium viscodty will have in the same
coordinates, a sope L4 equal to

L, = _B (31)
2.306
50 that the ratio of the two dopes should be
L B 5
—==1+—" (32)
L Cs

9
A gmilar logic can be gpplied and for the AM modd. At temperatures under T; the entropy
Scan be determined as

sT)=s +CIner Sc In&T? (33)
Oy

Taking into account Egs.(18,33) the nonequilibrium viscosity is given by:

¢ o 0, ol

h=h, expé2.3(135- Igh, ) é—g: g—fg G 34)

8 Tf ﬂ T 1] H
The dimensionless power gis proportiond to the ratio of the hest capacity Cy of the glass and the
heat capacity of the undercooled melt C,.

g:a& (35)
C

p

In agreement with experimental evidence, the modd predicts that in Arrhenius coordinates (see
Fig.1), the ratio between the dopes of the lines of nonequilibrium and equilibrium viscosity, is equd

C oC
to the ratio Cgl =t c P at the break point Ts. In Fig.1, lines are drawn according to Eq(34)

p p

C
with g h = 1.28; T,=801 K; T=806K; a=3.7 and g=1.7, i . C_g' »0.46 |

p
4 Correlation between adjustable parameter s of viscosity equations

The power a serves as ameasure for the “fragility” of glasses. “Strong” are glasseswith a
» 1. “Fragility” increases amultaneoudy with a. Moreover, it was demonstrated (see Eq.(20) ) that
a isproportiond to heat capacity. In terms of the AM modd the effective value of activation energy
responsible for the viscous flow is accounted for by Tg. In terms of the VFT modd, fragility could

T, T, . T,
be accounted for by the T—¥vaiue. For T_¥ ® 0 the systems are strong while for _I_—¥ ® 1 they

9 [¢] 9
become very fragile. It is a popular falacy thet, in the VFT modd, the activation energy is accounted
for by the parameter B. We adready demonstrated (see Eq.(30)) that B is a complicated parameter
accounting for “fragillity” to much greater extend. Actudly, the parameter that accounts for the
activation energy in dl moddsis the glass-trangtion temperature.
In dl modes the preexponentid congtant, if viscodty is measured in [dPa.s] units is given
(see Eq.(12) ) by



h, = 10Gt, (36)

where the vibration time ty is equd to relaxation time at extremdy high temperatures. The vibration
frequency of a sngle atom is about kBTT » 10t | predicting Ighy » -4 [dPa.s]. However, the

building unit responsible for relaxation process congsts of a number of atoms and, therefore, it has
much larger vibraion time (resp. lower vibration frequency). Therefore the rule could be
reformulated as Ighy3 -4. Table 2 summarizes data for the vaues of adjusting parameters, for many
glassforming melts. Parameters are determined to describe, by means of EQ.(19) the exigting
experimentd data ( [23,26-34] and literature cited there). It isseen that Ighy=0 +1.6 [dPa.g] .
Although T is considered as free parameter in both AM and VFT modes, it can vary ina
limited range as it must be equd to the glass-trandtion temperature within 2% of accuracy. It is
frequently assumed thet the third adjustable parameter, T, , of the VFT mode has a vaue close to
the Kauzmann temperature T, (see chapter 2). As for the third adjustable parameter in the AM

C
model (Eq.(19)), it was demondtrated [28] that a »1—8 if G ismeasured in [cal/K.mol], i.e. the

number of escgpe channdsis Z=10. Thisis seen well in Fig.2 where existing experimentd data (see
Table 2) of a are plotted againgt heat capacity.

The ability of AM modd to describe temperature dependence of viscosty is illugtrated in
Fig.3 where data on temperature dependence of viscosity of lead slicates [29] are compared with
the theory. The lines are afit to each set of data according to Eq.(19) with the values of adjustable
parameters given in Table 2.

In generd, the value of a increases smultaneoudy with the concentration of modifying oxides
in the glass. This can be explained easlly in terms of EQ.(20) by taking into account that heat capacity
depends on composition. According to Deby-Neumann law the hest capacity Cy(x) of composition
with molar fraction x of modifying oxidesis

C,(x)=C,(0)+3Rxz (37)
where C,,(0) isthe hest capacity of the pure network former. Considering Eq.(37) remember that the
number of escape channels Z is in fact the degeneracy of the sysem. Accordingly, the fragility

parameter a(x) can be expressed through the fragility parameter of the pure network former a(0) as
folows

2X3RxZ
+ =a(

a(x)=a(0) —

0) +6x (38)

Fig.4 shows the data for a againg the molar fraction x of modifying oxidesin glasses. Note
that data on each a vaue are obtained as adjustable parameters to the corresponding viscosity data,
independent on the other ones. The Straight line with adope of 6 isagood prove for the modd.



Table 2 Viscosity parameters

Substance h :h¥exp§ez.3(13.5— |gh¥)§_gggﬂ

Igh [dPas] | T, (K) a
S0, -3.85 1425 1.22
Li,O.2S0; 0.96 719 3.43
2Li,0.8S 0O, 0 734 2.25
3Li,0.7 SO, 0.53 708 3
0.05N&0.0.95S 0, -3.8 911 1.3
0.13N&0.0.875S 0, -2.7 839 2
N&0O. 350, 0.5 706 2.5
N&0.2S 0, 0.6 731 2.5
15N&0. 8550, 0 776 2.15
2 Ng0.8 SO, 0.1 735 2.27
3Na20.7Si02 0.65 711 2.85
3.3N&a20.6.7S02 0.4 705 2.8
4 Ng0.6 SO, 0.57 678 3
44Na20.56S102 0.28 655 2.9
N&O. SO, 0.25 825 4
2 K,0.850, 0.84 751 2.5
3 K,0.850, 1.37 703 3
Ba0.2S 0, -1.5 962 3.25
3 Pp0O.7S 0O, 0.66 743 3
3.5 Pb0.6.550,; 0.53 754 3.25
4 PbO.6S 0O, 0.24 712 3.5
4.6 Pb0O.5.4S0, 0.32 673 3.8
PpO. SO, -0.03 659 4
5.5 Ph0.4.5S50, -0.2 635 4.3
6Pp0O.4S 0, -0.3 627 4.9
97 8B,0; 21750, 1.38 520 3.25
94B,03 59550, 1.29 525 3
89 3B,0; 10 7SO, 1.45 527 3
51 6B,0; 48 4S50, 0.6 582 1.5
44 6B,05; 55450, -0.02 682 1
B.O3 0.95 511.5 2.75
13 5N&0.86 5B,03 -0.7 695 4.25
33 3N&0O 66 7B,05 -1.5 744 4.5
6L1,0.94B,0; 0.1 612 4
13.9Li,0.86.1B,0; -0.2 695 4.7
33.5L1,0.66.5B,03 -1.6 754 4.7
19.5K,0.80.5B,0; -0.16 675 4
24.4K,0.75.6B,03 0 677 4
18Ba0.82B,04 -0.97 790 4
23.9Ba0.76B,05 -0.9 826 4.5
33PbO. 67 B,0Os -2.9 718 4




PB,:PbO.2 B,0O; 0.09 780 9.5
P,Os -4.87 522 1
Li;O. P,Os 0.14 580 54
N&O. P,Os 0.43 544 5.5
GeO, 1.34 923 14
5N&0.95GeO, 0.11 695 2.25
10N&0.90GeO, -0.13 743 4.5
29.6N&0.70.4GeO, 0.43 710 6.5
20Pb0.80Ge0, 0.33 716 4.25
30Pb0O.70Ge0, 0.66 679 6.25
40Pb0.60Ge0, 0.25 715 5
50Ph0.50Ge0, 0.33 626 5.25
20.96N&0.9Ca0.70S 0O, 0.22 775 2.83
21Ng0.9Ca0.70S IO, 0.8 777 3.2
19N &0.9Ca0.72S 0, 0.4 784 2.9
21Ng0.7Ca0.72S 0, 0.5 769 2.9
N&0.2Ca0.3S 0, -2.57 821 2.77
2N&0.1Ca0.3S5 0, -4.54 742 3.2
Ca0. Al,O3. 2S0, -2.06 1105 3.5
(Ca0)0.423(A1203.)0.083(SO2) 0.404 -0.7 1043 4.18
(Ca0)0.430(A1:03.)0.083(SO2) 0.456 -0.7 1057 4.36
(Ca0)0.461(A1203.)0.105(SO2) 0.413 -0.7 1065 4.4
(Ca0)0479(A|203)0127(802) 0.373 '07 1075 461
(Ca0)0.505(Al:03.)0.147(SO2) 0330 -0.7 1084 4.62
(Ca0)0.351(A1:03.)0.164(SO>) 0.498 -0.7 1066 3.83
(CaO)o385(A|203)0151(802) 0.441 '07 1075 405
(Ca0)0.405(Al:03.)0.174(SO2) 0.305 -0.7 1089 4.25
(Ca0)0427(A|203)0225(302) 0.348 '07 1093 44
(Ca0)0.450(A1:03.)0.247(SO2) 0.204 -0.7 1104 4.56
(Ca0)0.428(A1:03.)0.143(SO>) 0.428 0.88 1056 4.77
N&O. Al,Os. 65O, -8.58 1012 1
2N&0.1Ca0.350; -5.54 742.3 3.2
5Na20.10Mg0.10Al1203.75 SO, |-1.77 1016 1.85
10N&0.10Mg0O.10Al,03;.70 SO, ]0.21 979 2.5
15N&0.10Mg0.10Al,03.65 SO, | 1.26 961 3.5
20N&0.10Mg0.10Al,03;.60 SO, | 1.27 899 3.5
10N&0.10Mg0.5A1,0;3.755 0, 0.4 933 2.42
10N&0.10Mg0.80SIO, -0.43 828.5 2
Albite -1.7 1051 1.9
Haplogranite -4.6 1081 1.36
Diopside CaMgS20e -1.07 974 3.5
Diopside 80 Anortite 20 -0.66 997 3.82
Diopside 64 Anortite 36 -0.03 1011 4.25
Diopside 40 Anortite 60 0.27 1034 4.31
Diopside 20 Anortite 80 0.23 1079 4.32




Anortite CaAl,S,0s 0.26 1126 4.53

Polystyrene 2.3 370 7

Glycerine -2.2 177 3.2

5 The pressure dependence of viscosity

There are some cases when pressure dependence of viscogty is very important, athough
most of the glasses are processed at no or at moderate pressure. For instance, it could answer the
guestion what is viscogty of Earth mantle. According to [35], mantle viscosty near 2000 km depth is
10* [dPa.s]. The extremdy high pressure there causes this. If viscosity isthat high, then isthe
mantle a glass? If it is congdered as solid amorphous body the answer is yes. On the other hand,
the relaxation time, corresponding to 10** [dPa.g], is about 10* years, a period quite large in
comparison with the human lifetime but quite short in comparison with the age of the Earth.
However, any digtortion of the mantle gppearing within the time of human history has not relaxed yet.

In order to find the pressure and temperature dependence of viscosity we have to introduce
into Eq.(19) the explicit form of the pressure P dependence of entropy. According to Maxwell's law
one has:

_HS o aﬂv o
TP 4 Q,r 1T & ;z;,
where K is the volume expandon coefficient. Although there are no data in the literature, it is
reasonable to assume that a extremdy high pressures k will reduce in a somewhat inversdy
proportiond to pressure P way, namely:
-1\ o oK P
V 1T & ﬂ) ‘P +P
where P is a congant and k, is the volume expanson coefficient & no pressure. It follows (for
detalsseeAppendlx 1) that pressure dependence of wscosty Isgiven by

=KV (39)

(40)

h= mexp.23(135 Igm)?oaep-"POP»h e>(p123(135 Igh, __33+E9” (41)
T P+Pgb ﬂg PZE
kV. kV.

where bz?P —a 20C P . Thevdue of Kk, (and respectively the vaue of b) could be

p
postive as well as negative. Water is the classica example of substance with negative thermad
expanson coefficient (between 0°C and 4°C). Many glasses are known with temperature
independent dengity. Therefore, there are certain compositions for which viscosity does not increase
with pressure (eg. anhydrous andesitic melts viscosity is independent of pressure [30,31]). Interms
of Eq. (41) this corresponds to zero or even negative therma expansion coefficient (resp. b£0 ).
The glass trandtion temperature depends on pressure asfollows:

b/a

Tgoé'i+ (42)

In EQ.(42) Ty stands for the glass transtlon temperature a no pressure. With this notation the
pressure and temperature dependence of viscosity keeps the form of Eq.(19)
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The modd could become more sophidticated if the temperature dependence of
compressibility coefficient is taken into account. So far, only the AM model describes the pressure
dependence of viscodty. There are certain attempts to adapt the AG mode to explain the pressure
dependence of viscosity (see [32,33]). Still, there remains a problem because the Maxwdl's law, i.e.
Eq.(39), isvdid for the whole entropy S, not necessarily for the configurationd entropy 6.

There are just a few rdiable experimenta data concerning the pressure dependence of
viscosity. The reason is that it is very difficult to congtruct an ingrument cgpable to measure viscosty
samultaneoudy a extremely high pressure and extremely high temperature for sufficiently long time to
avoid nonequilibrium effects. Therefore, most of the data on the pressure dependence of viscosty
are on organic materids as reported in Refs[36-43]. Fig. 5 gives the pressure dependence of
viscodty of orto therphenyl for temperatures given as parameter to each curve. The solid lines are
according to Eq.(41) with vaues d band P lised in Table 3. The experimentd points are from
Refs. [30,31,36-40]. It is seen that the ratio 2 = k"z\gp vaies in a limited region. The

p
temperature is given a each line. Note that after the P b parameters were determined for the first of
the curves, data at remaining temperatures were successfully described with not a single adjustable
parameter.

Recently, an unexpected corrdation was discovered (see Ref. [44]) between the extent of
fragility and the Poisson ratio of the resulting glass. Thisfinding could play an important role in better
understanding the properties of undercooled systems.

It was demondtrated that the AM modé is capable to describe with accuracy, superior to
that of the other models, both the temperature and the pressure dependence of viscosity. Therefore,
it is natura to ask: can it describe viscodty in the Earth bowels. There are experimentd indications
[45] het viscosity of the mantle varies between 107 and 107 [Pag]. In addition, there is a
pronounced low viscodty channg a about 250 km depths. The ability of the AM modd
(respectively Eq.(43) to describe the existing experimental data on viscosty of mantle deep in the
Earth bowels was confirmed [46] when known [47] dependencies of pressure and of temperature
on the depth in the Earth was introduced. Note that, with the vaues of viscosty experimentaly
observed [45], the rdlaxation time of the mantle is about 32 000 years, time suspicioudy close to the
period during which the direction of magnetic poles changes.

Table3
Substance PMPa |b b/a
glycerol 900 0.7 0.26
di-butyl phthaate 200 0.87 0.26
orto therpenyl 300 2.35 0.37
polymethyl phenylsloxane 499 4.33 0.58
andesite -- 0 0




APPENDIX 1
1 Detailed derivation of Avramov & Milchev (jJump frequency) model

The Avramov & Milchev [18-21] modd (AM modd) determines the temperature
dependence of the average jump frequency of molecules and, through it, the temperature
dependence of viscosty. If the probability of appearance of energy barrier of height E; isj (E;) then
the mean jump frequency isgiven as.

<n>=34nj (E) (44)

Note that n; decays exponentidly with the activetion energy.

n =n expg- (45)

kTg

At firg dte it seems that one problem is replaced with another: insteed of creating a modd for
determining the average energy barier <E> the mode deds with the determination of | (E)).
However, there is one very important advantage: Because n decays exponentialy with the activation
energy, of dgnificance for the summation is only the low energy part of the probability distribution
function j (E;) asillusrated in Fig.(6) where the thin solid line represents the dependence of the jump
frequency on the activation energy (according to Eq.(14)). The dotted line is a schemdtic
representation of the continuous didribution function j (E); it depends on the disperson of the
activation energy s and on the vaue of E.. An gopearance of higher barriers is unlikely because
the molecules cannot get closer. Although the native digtribution function is not known, a sufficiently
accurate result can be obtained. Thisis because most of the probability distribution functions differ in
the vidnity of the maximum but are getting together avay from the maximum (for E<< Euy).
Therefore, the tail of this unknown curve can be approximated with a sufficient accuracy with a
Poissonian law. Thefina result, the product of j (E) and n(E), is represented by the thick solid line.
In continuous case, Eq.(44) transforms to:

<n>= @mﬁxj (En(E)dE (46)

This equation can be solved for any specid choice of the j (E) distribution function. It was shown
[18-22] that the solution of Eq.(46), under the assumption that j (E) is described as Poissonian
digtribution (i.e. the jJump probability is consdered as aflow of independent events).

a=- E . 0
XPe———

jE=—2F8 S o (47)
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is given by the expression:
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For RT<s<En., thetermto theleft of n,, , as compared to the exponentia term on the right-hand
sde isawesk temperature function of the order of unity. Therefore, one can use the gpproximetion:

_ Emax

<n>»n,e s (49)

Eq.(49) is of little use, unlessdisperson s is expressed through some known and eesily
measurable variable. There is a strong relationship between the disperson s and the entropy S of
the system:

&2(s- s, )u

s =s expe—u (50)
€ R

Here sq is the digpersion at the reference state with entropy §; and Z/2 is the degeneracy of the
system, i.e. Z is the number of escape channds available for the moving particle and each channel
can be usad in two directions. Taking into account that viscodity isinversaly proportiond to the mean
jump frequency the viscosity can be expressed through Egs.(49 and 50) as.

i 5 2|S- S, Jul
h=h, expj eexpg- ulﬁ, (51
T & IR
where e = Erax
S ¢]
The entropy depends on temperature T as.
T -
ST) =S, + Fpdin T (52)
T

In the following we gpply the most frequently used gpproximation that heat capacity is temperature
independent, i.e. C, isthe average value for the interval between T, and T. Under this assumption the
entropy of amet in metastable equilibrium is becoming:
0
ST)=S, + cm?i (53)
Ts &

Eq.(51) together with Eq.(48) determines the dispersity as.

2T 0

s :sgé?i (54)
99

where the "fragility” parameter a in sandsfor:
2C
— P

(55)
ZR
Intermsof a, Equs.(49) and (51-53) give:
S U
h=h, expge-0 | (56)
gelaop

pressure dependence of viscosity



The entropy can be expressed by means of volume expansion coefficient k :\%ETT_\'I{Q in the
%
form:
P
S- S,=V,, kdp (57)
Ry

where Vy, is the molar volume. An explicit form of the dependence of kon P is needed to solve
Eq.(57). Although there are no datain the literature, it is reasonable to assume that at extremely high
pressures k will reduce in a somewhat inversely proportiond to pressure P way, namdly:
k = ialv g »k
VT °"P+P
where P is a congant and kK, is the volume expansion coefficient a no pressure. In this case the
solution of Eq. (57) leadsto:

(58)

T aP +PoO
S=S, +C In—- k,)V, PlIn T
J T gP +P;

g (o]

So that, for P,<<P, the viscosty Eq. (51) yidds.

(59)

v (60
b
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gy whee T, (P)=T,d1+ =2 (61)
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Figure captions

Fig.1 Viscodity of a standard soda-lime slicate glass NBS710. Solid points represent equilibrium
viscosity. Non-equilibrium viscosity is given by the open points,

Fig.2 Dependence of parameter a on average heat capacity. The solid line hasadope 0.1

Fig.3 Temperature dependence of viscosdty of slicates: [1- (Nax0)o.25(S02)o0.75 ;
B- (PbO).4(SO5)06; D- (PbO)os(S0Os)05; ¥ - (PbO)o.s(SO2)o.4

Fig.4 Compostion X, dependence of parameter a. [0 - two-component Slicates, M- three
component slicates. A solid linewith adope equa to 6 is drawn.



Fig5  Pressure dependence of viscosty of OTP (orto therpenyl) at temperatures given as
parameter at each curve. Solid lines are according to Eq.(41).

Fig.6 The thin solid line represents the dependence of the jump frequency N(E) on the activation
energy (according to Eq.(14)). The dotted line is a schematic representation of the continuous
digribution function N(E). The product N(E).j (E) is presented by the thick solid line.
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Fig.2 Dependence of parameter a on average heat capacity. The solid line hasadope 0.1
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Fig.3 Temperature dependence of viscodity of slicates: [1- (Nax0)o.25(S02)o075 ;
H- (PbO).4(SO5)06; D- (PbO)os(SOy)05; ¥ - (PbO)o.s(SO2)0.4



Fig.4 Compostion ,x, dependence of parameter a. [ - two-component slicates, l- three
component slicates. Solid line has adope equd to 6.
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Fig.5 Pressure dependence of viscosity of OTP (orto therpenyl) at temperatures given as
parameter at each curve. Solid lines are according to Eq.(41).
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Fig. 6 The thin solid line represents the dependence of the jump frequency N(E) on the activation
energy (according to Eq.(14)). The dotted line is a schematic representation of the continuous
digribution function N(E). The product N(E). j (E) is presented by the thick solid line.



