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SUMMARY 
 
The paper addresses the properties of glassforming melts in an attempt to predict the dependence of 
viscosity on temperature and on pressure. A review on the main viscosity models (free volume 
model, the Adam & Gibbs model etc.) is given. It is demonstrated that the activation energy can be 
expressed through the glass transition temperature Tg. The main attention is concentrated on the 
jump frequency model of Avramov & Milchev, the AM model. According to it, viscosity η 
depends on the entropy S of the system and through it on temperature and on pressure. The viscosity 
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approach, describes the plethora of experimental data, summarized in the article, with an accuracy, 
superior to that of the other models.  It is demonstrated that the fragility power α  depends on heat 
capacity. Therefore, the composition dependence of α is in agreement with Deby-Neumann law. 
 
 

  
 
 
1. Introduction 
Viscosity, or the internal friction during the motion of liquid, appears because various layers 

flow with different velocities and glide with respect to each other. Due to the attractive forces, the 
faster moving layers tend to carry with them the layers, which move at lower rate. In this way a 
friction between the adjacent layers appears, giving rise to irreversible conversion of a part of the 
energy of motion to heat, i.e. to dissipation of energy.  
 For a laminar flow, the Newton’s law relates the frictional force f the surface undergoing 
friction A and the velocity gradient du/dx in direction perpendicular to flow direction through 
viscosity coefficient η as follows: 

    
dx
du

Af η=      (1) 

where η the dynamic viscosity is measured in [Pa.s] units, more popular is the old unity [Poise] = 
[dPa.s]. There is no time in Thermodynamics, therefore viscosity cannot be a pure thermodynamic 
variable and cannot be determined by pure thermodynamic methods, instead of this it is always 
determined in the framework of certain models.  This rule is valid also for diffusion coefficients, for 
characteristic times etc. The use of models leads to some uncertainty. Thus, at least one order of 
magnitude difference appears between particular expressions relating viscosity, diffusion coefficient 



and relaxation time.  According to Stokes the friction coefficient F of particle of diameter d is related 
to viscosity as: 

ηπd3F =      (2) 

 This equation gives the background for experimental determination of absolute value of 
viscosity. The self-diffusion coefficient D can be derived considering diffusion of molecules as a 
particular case of Brownian motion. Applying the Einstein’s approach [1] the following relation is 
obtained 
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where do is the size of the building unit and kB is Boltzmann constant. Hereafter we call the building 
units responsible for the motion “molecules”, although strictly speaking, they could be sometimes 
different from molecules in chemistry notation. The absolute rate [2] theory gives: 
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Similarity between Eqs.(3 and 4) is evident. However, the two models predict about one order of 
magnitude difference in the value of the self-diffusion coefficient. Further, one can use the Einstein’s 
relation, connecting the mean square displacement and time  
    Dt2X 2 =      (5) 
to determine the Frenkel’s time [3] τR for the average displacement to distance do of one molecule  
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The relationship between Frenkel’s time and viscosity is easily obtained combining Eqs.(3, 6) 
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where R is the ideal gas constant and Vm is the molar volume.  A similar result 
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is obtained if Eq.(4) is used instead of Eq.(3). It is a common assumption that relaxation proceeds as 
spatial rearrangement of molecules. Therefore, it is supposed that Frenkel’s time is equivalent to 
relaxation time.  

Maxwell law establishes relation between τR and η through the elasticity modulus G� as 
 
    RG τη ∞=      (9) 

 
It is not clear what is elasticity modulus of a liquid. The experimental data on solid glassy state near 
the glass-transition temperature Tg give for elasticity modulus 
      G ∞ ~ 1010 [Pa].    (10) 

The value of 
mV

RT
 is about 108 Pa. So, a discrepancy of about two orders of magnitude appears 

between the expected values of 
mV

RT
and G ∞. It seems, this is because G ∞ of the liquid is lower than 

that of the glass. Some typical viscosity values (see for instance Ref.[4]) are listed in Table 1 and 
compared to relaxation time. 



 
Table 1: viscosity of some substances (see [4]) 
Substance Viscosity η in [dPa.s] Relaxation time τ  in [s] 
Air at room temperature 2.10-4  
Water at room temperature 10-2  
Motor Oil at room temperature 10  
Honey  102  
Andesite Lava 107 to 108  
Rhyolite Lava 1012 to 1013  

Glass working point 104  
Glass flow point 105  
Glass softening point 107.6  
Glass dilatometric softening 
point 

1011.3  

annealing point 1013 15 min = 900 s 
Glass at glass-transition 
temperature 

1013.5 100 min = 6 103s 

Glass strain point 1014.5 15h ≈5.4 104 [s] (initial 
strain is relaxed to 10%) 

Solid like behaviour >1015  

According to Table 1 the value of 
Rτ

η
 varies between  5.108 and 109 [Pa]. To summarize: viscosity 

is proportional to relaxation time  
 
    RGτη=      (11) 

 
where the proportionality coefficient G, varying between  108 and 109 [Pa], is determined by 
different models as follows:   
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Equation (11) reflects the first set of models in determining the relationship between the 
thermodynamic variables and viscosity. As soon as the time τR depends on thermodynamic variables 
(like temperature T and pressure P) much stronger then G, a second set of models is needed in 
determining τR  while G is assumed a constant. 
 
 

2. The temperature dependence of viscosity 
 

The mode coupling theory [5-9] reveals the influence of the density fluctuations modes on 
viscosity. The motion of a particle transfers some energy to be redistributed among the surrounding 



particles. It results in a density fluctuation modes with a given wave vector. The density correlation 
function Φ(t) is determined by the equation of motion 

   ( ) ( ) 0dt't't'-tm
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where Ω is frequency. The memory kernel m(t) reflects the collective effects arising from the 
cooperative motion of a particle and its surrounding. Some prove of the model comes from the 
molecular dynamic simulation of Roe [10]. He investigates the short time motion in polymer glass 
forming liquid. Unlike the small molecule liquids, no hopping is observed in this case. 

Although the mode-coupling theory predicts properly the occurrence of the glass transition it 
still has long way to go in order to be become applicable in quantitative description. More successful 
are models considering viscosity as a thermally activated process, i.e. its temperature dependence is 
given [2] by the expression: 
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Viscosity of glass-forming melts increases sharply when temperature T decreases. If the 
activation energy E of the viscous flow is temperature independent, the experimental data should give 
a straight line when plotted in Arrhenius coordinates, lg η  vs  1/T.  An example (according to 
Mazurin at al [11]) is shown in Fig.(1) for viscosity of a standard soda-lime silicate glass NBS710. 
Solid points represent equilibrium viscosity. Non-equilibrium viscosity, measured below the glass-
transition temperature is given by the open points. If sample is annealed long time, viscosity steadily 
increases from that of the open points towards that of the solid points. Two important features are 
readily seen: first, below the glass transition temperature there appears a pronounced difference in 
the viscosity behavior of the non-equilibrium system and second: the experimental point do not give 
in Arrhenius coordinates a straight line even for equilibrium system. Therefore, one has to assume 
that, in general, the activation energy depends on temperature 
    ( )TEE =     (15) 

 
It seems that most of the contemporary models [8,9,12-14] are devoted to determination of 

the temperature dependence of the average value of the activation energy. Authors proposed a 
number of equations for the temperature dependence of viscosity. The best of them have three 
adjustable parameters, two of which are used to adjust E(T) while the third one is for the 
preexponential constant η∞.  

One of the best known expressions is the empirical equation of Vogel-Fulcher –Tammann 
(VFT): 
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It is capable to describe viscosity data, varying over 10 orders of magnitude, with accuracy better 
then 10%. A similar expression is known, in polymer science, as equation of Williams-Landel-Ferry 
with  an “universal” constant characteristic of the activation energy for chain motion (reptation) in 
the melt 6.280 kJ/mol and T∞ ≈ Tg – 50K. It is well known [15,16] that a single VFT equation 
cannot accurately describe viscosity at all temperatures. According to this equation, viscosity 
diverges for temperatures approaching T∞. Although viscosity is certainly finite, this is a minor 
problem because at low temperatures viscosity is very high and out of practical interest. 



 Cohen and Turnbull [12] developed the “free volume” model according to which the flow 
occurs by motion of molecules into some voids. Within certain approximation this approach leads to 
Eq.(16).  

Macedo and Litovitz [13] determine the average activation energy from the probability of 
forming a hole. The values of parameters needed to fit the viscosity data were found [17] to be 
unrealistic. 
 It is logical to consider the motion as a cooperative process involving a simultaneous 
rearrangement of a large number of molecules. The Adam–Gibbs model [14] is based on the idea 
that motion occurs by internal cooperative rearrangement of independent regions of n molecules. 
When temperature decreases, the motion of one molecule disturbs an increasingly larger number n of 
its neighbors. Adam and Gibbs (AG model) assumes that the barrier of rearrangement is 
proportional to n, and determined the temperature dependence of n in terms of the configurational 
entropy, ∆S  as follows: 
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i.e. (see Eqs.(14,15) 
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Although the Adam-Gibbs model fits well a large number of viscosity data on glassforming melts, it 
fails for others [9].  

To move, the building units meet always the same activation energy barrier in the perfect 
crystal. In amorphous state there is a more or less broad distribution of the activation energy heights 
E. We already mentioned that motion occurs by cooperative rearrangement of several molecules. It 
seems that this is the reason why most of the models of viscosity determine the average value of the 
activation energy for a given set of parameters T, P, etc. However, this is a fallacy because the 
average jump frequency is not determined by the average value of the activation energy.  

The Avramov & Milchev [18-21] model (AM model) determines the temperature 
dependence of the average jump frequency of molecules and, through it, the viscosity. For the details 
of the model see Appendix 1. The main assumption is that, because of the existing disorder, the 
activation energy barriers of different height appear. The width ,σ, of the distribution function barriers 
heights depends on entropy. Therefore viscosity is a function of entropy S of the system according to 
equation  
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where a certain reference state is denoted with subscript g. We choose as reference state the glass 
transition temperature Tg. It is well known that the experimentally determined glass transition 
temperature depends on the measured property as well as on the heating (or cooling) rate. Here, for 
Tg , we adopt the temperature at which viscosity is ηg=1013.5  [dPa.s]. Therefore, in Eq.(18) Sg is 
the equilibrium entropy at Tg while Z/2  is the number of escape channels available for the moving 
particle. Note that Tg  is always in the glass-transition interval and, therefore, it has a value close to 
that of the experimentally determined glass-transition temperature (within ±2% of accuracy). 
Equation (18) relates viscosity to the entropy of the system. Unlike most of the recent approaches 
(see [20-22] and literature cited there) η depends on the whole entropy, not on the configuration 
entropy only. Therefore, the viscosity does not diverge at the Kauzmann temperature T∞, although it 
is becoming extremely high. Eq.(18) is a double exponential function on entropy. This, quite 



unpleasant situation, is surmounted by taking into account that entropy is a logarithmic function on 
temperature. Therefore the temperature dependence of equilibrium viscosity (see Attachment 1) is 
given by  
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where the ”fragility” parameter α in stands for: 
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3. Activation energy and glass-transition temperature.  
 
The main advantage in defining Tg  as the temperature at which ηg=1013.5  [dPa.s] is that the 

activation energy E(Tg) is  a simple function of Tg. Thus, from the general expression given by 
Eqs.(14,15) one obtains 

   ( ) ( ) gg RTlg5.133.2TE ∞−= η    (21) 

Equation (21) permits to resolve only the value of activation energy at Tg. Determination of 
the activation energy in the whole temperature range requires a detailed model of viscosity, for 
instance this is possible using one of the VFT, AG or AM approaches.  On the other hand, Eq.(21) 
is valid for all these models since they are particular cases of Eqs.(14,15).  This permits us to 
determine, in terms of Tg, both the temperature dependence of the activation energy and the 
temperature function of viscosity. In the case of the VFT equation(16) they are:  
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In the case of the AG model (Eq.(17)) the corresponding expressions become:  
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respectively 
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In the case of the AM model, Eq.(19) gave already the temperature dependence of viscosity in Tg 
terms. As for the activation energy, it becomes 
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 Note that Eq.(19) always describe the experimental data with equal or superior accuracy as 
compared to Eqs.(23,25) (see for instance [23]).  

Empirically, Angell at al separate glasses to strong one and fragile one (see for instance 
[24]). The “strong” glasses do not change structure with increasing temperature. Therefore, these 
systems have relatively low heat capacity and the activation energy for viscous flow is not sensitive to 
temperature changes. On the other side are “fragile” glasses with a “week” structure that easily 
changes with temperature. They have high heat capacity and the activation energy changes with 
temperature. To account for the fragility the authors [24] formulated the steepness index or fragility 
index m as follows 
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It is a popular fallacy that the activation energy in the glass transition region can be 

determined experimentally as equal to ( )
g
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. Thus in the case of AM model, Eq.(19), the slope m is 
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A comparison with Eq. (21) (see also Eq.(26)) yields 
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 3. Viscosity of nonequilibrium systems 

 
In the glass-transition region the experimental time scale becomes comparable with the time 

scale for structural rearrangements. The relaxation time increases sharply upon further cooling. In this 
way, the structure is fixed so that the system turns into a nonequilibrium state. Therefore, an 
additional internal parameter is needed to describe it. For this reason Tool and Eichlin [25] 
introduced the so-called "fictive" or "structural" temperature Tf. This is the temperature at which the 
system with a given structure will be in equilibrium. At temperatures lower then Tf the configurational 
entropy ∆S is fixed (i.e. the configurational part ∆Cp of the heat capacity vanishes) 

Eqs.(17,18) give the dependence of viscosity on the entropy. Therefore, both the AG 
approach as well as the jump frequency AM model are capable to describe the temperature 
dependence of viscosity of both equilibrium and nonequilibrium glasses (see Fig.1). 

Basically, the entropy of undercooled melts splits into two parts: configuration entropy ∆S, 
and vibration entropy Svibr. Respectively, the heat capacity of undercooled melts is Cp = ∆Cp + Cgl. 
According to Eq.(17) in Arrhenius coordinates the slope  Le of log η against 1/T  is  
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If configurational entropy is fixed the nonequilibrium viscosity will have, in the same 
coordinates, a slope Lg equal to  
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so that the ratio of the two slopes should be  
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A similar logic can be applied and for the AM model. At temperatures under Tf the entropy 
S can be determined as 
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Taking into account Eqs.(18,33) the nonequilibrium viscosity is given by: 
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The dimensionless power γ is proportional to the ratio of the heat capacity Cgl of the glass and the 
heat capacity of the undercooled melt Cp. 
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 In agreement with experimental evidence, the model predicts that in Arrhenius coordinates (see 
Fig.1), the ratio between the slopes of the lines of nonequilibrium and equilibrium viscosity, is equal 

to the ratio 
p
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4 Correlation between adjustable parameters of viscosity equations   
 
The power α serves as a measure for the “fragility” of glasses.  “Strong” are glasses with α 

≈ 1. “Fragility” increases simultaneously with α. Moreover, it was demonstrated (see Eq.(20) ) that 
α  is proportional to heat capacity. In terms of the AM model the effective value of activation energy 
responsible for the viscous flow is accounted for by Tg.  In terms of the VFT model, fragility could 

be accounted for by the 
gT

T∞ value. For 0
T
T

g

→∞  the systems are strong while for 1
T
T

g

→∞  they 

become very fragile. It is a popular fallacy that, in the VFT model, the activation energy is accounted 
for by the parameter B. We already demonstrated (see Eq.(30)) that B is a complicated parameter 
accounting for “fragillity” to much greater extend. Actually, the parameter that accounts for the 
activation energy in all models is the glass-transition temperature. 

In all models the preexponential constant, if viscosity is measured in [dPa.s] units, is given 
(see Eq.(12) ) by  

 



  ∞∞ = τη G10     (36) 

 
 where the vibration time τ∞ is equal to relaxation time at extremely high temperatures. The vibration 

frequency of a single atom is about 13B 10
h
Tk

≈ s-1 , predicting lgη∞ ≈ -4 [dPa.s].  However, the 

building unit responsible for relaxation process consists of a number of atoms and, therefore, it has 
much larger vibration time (resp. lower vibration frequency). Therefore the rule could be 
reformulated as  lgη∞≥ -4. Table 2 summarizes data for the values of adjusting parameters, for many 
glassforming melts. Parameters are determined to describe, by means of Eq.(19) the existing 
experimental data ( [23,26-34] and literature cited there). It is seen that lgη∞=0 ±1.6 [dPa.s] .  

Although Tg is considered as free parameter in both AM and VFT models, it can vary in a 
limited range as it must be equal to the glass-transition temperature within 2% of accuracy. It is 
frequently assumed that the third adjustable parameter, T? , of the VFT model has a value close to 
the Kauzmann temperature To (see chapter 2). As for the third adjustable parameter in the AM 

model (Eq.(19)), it was demonstrated [28] that 
10

Cp≈α   if Cp is measured in [cal/K.mol], i.e. the 

number of escape channels is Z=10. This is seen well in Fig.2 where existing experimental data (see 
Table 2) of α are plotted against heat capacity. 

The ability of AM model to describe temperature dependence of viscosity is illustrated in 
Fig.3 where data on temperature dependence of viscosity of lead silicates [29] are compared with 
the theory. The lines are a fit to each set of data according to Eq.(19) with the values of adjustable 
parameters given in Table 2.  

In general, the value of α increases simultaneously with the concentration of modifying oxides 
in the glass. This can be explained easily in terms of Eq.(20) by taking into account that heat capacity 
depends on composition. According to Deby-Neumann law the heat capacity Cp(x) of composition 
with molar fraction x of modifying oxides is 

 
  ( ) RxZ30C)x(C pp +=    (37) 

where Cp(0) is the heat capacity of the pure network former. Considering Eq.(37) remember that the 
number of escape channels Z is in fact the degeneracy of the system. Accordingly, the fragility 
parameter α(x) can be expressed through the fragility parameter of the pure network former α(0) as 
follows:  

  ( ) ( ) x60
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0)x( +=⋅+= ααα    (38) 

 
  Fig.4 shows the data for α  against the molar fraction x of modifying oxides in glasses. Note 
that data on each α value are obtained as adjustable parameters to the corresponding viscosity data, 
independent on the other ones.  The straight line with a slope of 6 is a good prove for the model.  
 



Table 2 Viscosity parameters  
Substance  ( )
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 lgηo [dPas] Tg  (K) α 

SiO2  -3.85 1425 1.22 
Li2O.2SiO 2 0.96 719 3.43 
2 Li2O.8 SiO 2 0  734 2.25 
3Li2O.7 SiO 2 0 .53 708 3 
0.05Na2O.0.95SiO 2 -3.8 911 1.3 
0.13Na2O.0.875SiO 2 -2.7 839 2 
Na2O. 3SiO 2 0.5 706 2.5 
Na2O.2SiO 2 0.6 731 2.5 
15Na2O. 85SiO 2 0 776 2.15 
2 Na2O.8 SiO 2 0 .1 735 2.27 
3Na2O.7SiO2 0.65 711 2.85 
3.3Na2O.6.7SiO2 0.4 705 2.8 
4 Na2O.6 SiO 2 0.57 678 3 
44Na2O.56SiO2 0.28 655 2.9 
Na2O. SiO2 0.25 825 4 
2 K2O.8SiO 2 0 .84 751 2.5 
3 K2O.8SiO 2 1.37 703 3 
BaO.2SiO 2 -1.5 962 3.25 
3 PbO.7SiO 2 0 .66 743 3 
3.5 PbO.6.5SiO2 0.53 754 3.25 
4 PbO.6SiO 2 0 .24 712 3.5 
4.6 PbO.5.4SiO 2 0.32 673 3.8 
PbO. SiO 2 -0.03 659 4 
5.5 PbO.4.5SiO 2 -0.2 635 4.3 
6PbO.4SiO 2 -0.3 627 4.9 
97 8B2O3 2 17SiO 2 1.38 520 3.25 
94B2O3 5 95SiO 2 1.29 525 3 
89 3B2O3 10 7SiO 2 1.45 527 3 
51 6B2O3 48 4SiO 2 0.6 582 1.5 
44 6B2O3 55 4SiO 2 -0.02 682 1 
B2O3 0.95 511.5 2.75 
13 5Na2O.86 5B2O3 -0.7 695 4.25 
33 3Na2O 66 7B2O3 -1.5 744 4.5 
6Li2O.94B2O3 0.1 612 4 
13.9Li2O.86.1B2O3 -0.2 695 4.7 
33.5Li2O.66.5B2O3 -1.6 754 4.7 
19.5K2O.80.5B2O3 -0.16 675 4 
24.4K2O.75.6B2O3 0 677 4 
18BaO.82B2O3 -0.97 790 4 
23.9BaO.76B2O3 -0.9 826 4.5 
33PbO. 67 B2O3 -2.9 718 4 



PB2:PbO.2 B2O3 0.09 780 9.5 
P2O5 -4.87 522 1 
Li2O. P2O5 0.14 580 5.4 
Na2O. P2O5 0.43 544 5.5 
GeO2 1.34 923 1.4 
5Na2O.95GeO2 0.11 695 2.25 
10Na2O.90GeO2 -0.13 743 4.5 
29.6Na2O.70.4GeO2 0.43 710 6.5 
20PbO.80GeO2 0.33 716 4.25 
30PbO.70GeO2 0.66 679 6.25 
40PbO.60GeO2 0.25 715 5 
50PbO.50GeO2 0.33 626 5.25 
20.96Na2O.9CaO.70SiO 2 0.22 775 2.83 
21Na2O.9CaO.70SiO 2 0.8 777 3.2 
19Na2O.9CaO.72SiO 2 0.4 784 2.9 
21Na2O.7CaO.72SiO 2 0.5 769 2.9 
Na2O.2CaO.3SiO 2 -2.57 821 2.77 
2Na2O.1CaO.3SiO 2 -4.54 742 3.2 
CaO. Al2O3. 2SiO2 -2.06 1105 3.5 
(CaO)0.423(Al2O3.)0.083(SiO2) 0.494 -0.7 1043 4.18 
(CaO)0.439(Al2O3.)0.083(SiO2) 0.456 -0.7 1057 4.36 
(CaO)0.461(Al2O3.)0.105(SiO2) 0.413 -0.7 1065 4.4 
(CaO)0.479(Al2O3.)0.127(SiO2) 0.373 -0.7 1075 4.61 
(CaO)0.505(Al2O3.)0.147(SiO2) 0.330 -0.7 1084 4.62 
(CaO)0.351(Al2O3.)0.164(SiO2) 0.498 -0.7 1066 3.83 
(CaO)0.385(Al2O3.)0.151(SiO2) 0.441 -0.7 1075 4.05 
(CaO)0.405(Al2O3.)0.174(SiO2) 0.395 -0.7 1089 4.25 
(CaO)0.427(Al2O3.)0.225(SiO2) 0.348 -0.7 1093 4.4 
(CaO)0.459(Al2O3.)0.247(SiO2) 0.294 -0.7 1104 4.56 
(CaO)0.428(Al2O3.)0.143(SiO2) 0.428 0.88 1056 4.77 
Na2O. Al2O3. 6SiO2 -8.58 1012 1 
2Na2O.1CaO.3SiO2 -5.54 742.3 3.2 
5Na2O.10MgO.10Al2O3.75 SiO 2 -1.77 1016 1.85 
10Na2O.10MgO.10Al2O3.70 SiO 2 0.21 979 2.5 
15Na2O.10MgO.10Al2O3.65 SiO 2 1.26 961 3.5 
20Na2O.10MgO.10Al2O3.60 SiO 2 1.27 899 3.5 
10Na2O.10MgO.5Al2O3.75SiO 2 0.4 933 2.42 
10Na2O.10MgO.80SiO2 -0.43 828.5 2 
Albite -1.7 1051 1.9 
Haplogranite -4.6 1081 1.36 
Diopside  CaMgSi2O6 -1.07 974 3.5 
Diopside 80 Anortite 20 -0.66 997 3.82 
Diopside 64 Anortite 36 -0.03 1011 4.25 
Diopside 40 Anortite 60 0.27 1034 4.31 
Diopside 20 Anortite 80 0.23 1079 4.32 



Anortite  CaAl2Si2O8 0.26 1126 4.53 
Polystyrene  2.3 370 7 
Glycerine -2.2 177 3.2 

 
 
 
 

5 The pressure dependence of viscosity 
 
There are some cases when pressure dependence of viscosity is very important, although 

most of the glasses are processed at no or at moderate pressure. For instance, it could answer the 
question what is viscosity of Earth mantle. According to [35], mantle viscosity near 2000 km depth is 
1021  [dPa.s].  The extremely high pressure there causes this. If viscosity is that high, then is the 
mantle a glass? If it is considered as solid amorphous body the answer is yes. On the other hand, 
the relaxation time, corresponding to 1021  [dPa.s], is about 104 years, a period quite large in 
comparison with the human lifetime but quite short in comparison with the age of the Earth. 
However, any distortion of the mantle appearing within the time of human history has not relaxed yet. 

 In order to find the pressure and temperature dependence of viscosity we have to introduce 
into Eq.(19) the explicit form of the pressure P dependence of entropy. According to Maxwell's law 
one has: 
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where κ is the volume expansion coefficient. Although there are no data in the literature, it is 
reasonable to assume that at extremely high pressures κ  will reduce in a somewhat inversely 
proportional to pressure P way, namely: 
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where Π is a constant and κο is the volume expansion coefficient at no pressure. It follows (for 
details see Appendix 1) that pressure dependence of viscosity is given by 
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where Π
κ

αΠ
κ

β
p

momo

C2
V

ZR
V

== .  The value of κo (and respectively the value of β ) could be 

positive as well as negative. Water is the classical example of substance with negative thermal 
expansion coefficient (between 0oC and 4oC). Many glasses are known with temperature 
independent density.  Therefore, there are certain compositions for which viscosity does not increase 
with pressure (e.g. anhydrous andesitic melts viscosity is independent of pressure [30,31]). In terms 
of Eq. (41) this corresponds to zero or even negative thermal expansion coefficient (resp.  β≤0 ).  

The glass transition temperature depends on pressure as follows:  
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In Eq.(42)  Tgo stands for the glass transition temperature at no pressure. With this notation the 
pressure and temperature dependence of viscosity keeps the form of Eq.(19) 
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 The model could become more sophisticated if the temperature dependence of 
compressibility coefficient is taken into account. So far, only the AM model describes the pressure 
dependence of viscosity. There are certain attempts to adapt the AG model to explain the pressure 
dependence of viscosity (see [32,33]). Still, there remains a problem because the Maxwell's law, i.e. 
Eq.(39), is valid for the whole entropy S, not necessarily for the configurational entropy ∆S.  

There are just a few reliable experimental data concerning the pressure dependence of 
viscosity. The reason is that it is very difficult to construct an instrument capable to measure viscosity 
simultaneously at extremely high pressure and extremely high temperature for sufficiently long time  to 
avoid non-equilibrium effects. Therefore, most of the data on the pressure dependence of viscosity 
are on organic materials as reported in Refs.[36-43]. Fig. 5 gives the pressure dependence of 
viscosity of orto therphenyl for temperatures given as parameter to each curve. The solid lines are 
according to Eq.(41) with values of β and Π  listed in Table 3. The experimental points are from 

Refs. [30,31,36-40]. It is seen that the ratio 
p

mo

C2
V Πκ

α
β

=  varies in a limited region. The 

temperature is given at each line. Note that after the Π,β parameters were determined for the first of 
the curves, data at remaining temperatures were successfully described with not a single adjustable 
parameter. 

Recently, an unexpected correlation was discovered (see Ref. [44]) between the extent of 
fragility and the Poisson ratio of the resulting glass. This finding could play an important role in better 
understanding the properties of undercooled systems.  

It was demonstrated that the AM model is capable to describe with accuracy, superior to 
that of the other models, both the temperature and the pressure dependence of viscosity.  Therefore, 
it is natural to ask: can it describe viscosity in the Earth bowels. There are experimental indications 
[45] hat viscosity of the mantle varies between 1021 and 1023 [Pa.s]. In addition, there is a 
pronounced low viscosity channel at about 250 km depths. The ability of the AM model 
(respectively Eq.(43) to describe the existing experimental data on viscosity of mantle deep in the 
Earth bowels was confirmed [46] when known [47] dependencies of pressure and of temperature 
on the depth in the Earth was introduced. Note that, with the values of viscosity experimentally 
observed [45], the relaxation time of the mantle is about 32 000 years, time suspiciously close to the 
period during which the direction of magnetic poles changes. 

 
 

 
 
Table 3 
 
Substance ΠΠ  MPa ββ  β/αβ/α  
glycerol 900 0.7 0.26 
di-butyl phthalate 200 0.87 0.26 
orto therpenyl 300 2.35 0.37 
polymethylphenylsiloxane 499 4.33 0.58 

andesite -- 0 0 



 
 
APPENDIX 1 
 

1 Detailed derivation of Avramov & Milchev (jump frequency)  model 
 
The Avramov & Milchev [18-21] model (AM model) determines the temperature 

dependence of the average jump frequency of molecules and, through it, the temperature 
dependence of viscosity. If the probability of appearance of energy barrier of height Ei is ϕ(Ei) then 
the mean jump frequency is given as: 

 

∑>=< )E( iiϕνν                     (44) 

 
Note that νi decays exponentially with the activation energy.  
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At first site it seems that one problem is replaced with another: instead of creating a model for 
determining the average energy barrier  <E> the model deals with the determination of ϕ(Ei). 
However, there is one very important advantage: Because ν decays exponentially with the activation 
energy, of significance for the summation is only the low energy part of the probability distribution 
function ϕ(Ei) as illustrated in Fig.(6) where the thin solid line represents the dependence of the jump 
frequency on the activation energy (according to Eq.(14)). The dotted line is a schematic 
representation of the continuous distribution function ϕ(E); it depends on the dispersion of the 
activation energy σ and on the value of Emax.  An appearance of higher barriers is unlikely because 
the molecules cannot get closer. Although the native distribution function is not known, a sufficiently 
accurate result can be obtained. This is because most of the probability distribution functions differ in 
the vicinity of the maximum but are getting together away from the maximum (for E<< Emax). 
Therefore, the tail of this unknown curve can be approximated with a sufficient accuracy with a 
Poissonian law. The final result, the product of ϕ(E) and ν(E),  is represented by the thick solid line. 

In continuous case, Eq.(44) transforms to:  
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 This equation can be solved for any special choice of the ϕ(E) distribution function. It was shown 
[18-22] that the solution of Eq.(46), under the assumption that ϕ(E) is described as Poissonian 
distribution (i.e. the jump probability is considered as a flow of independent events). 
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 is given by the expression: 
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For  RT<σ<Emax., the term to the left of νoo , as compared to the exponential term on the right-hand 
side, is a weak  temperature function of the order of unity. Therefore, one can use the approximation: 
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 Eq.(49) is of little use, unless dispersion σ  is expressed through some known and easily 
measurable variable. There is a strong relationship between the dispersion σ  and the entropy S of 
the system:  
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Here σg is the dispersion at the reference state with entropy Sg and Z/2 is the degeneracy of the 
system, i.e. Z is the number of escape channels available for the moving particle and each channel 
can be used in two directions. Taking into account that viscosity is inversely proportional to the mean 
jump frequency the viscosity can be expressed through Eqs.(49 and 50) as: 
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where 
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The entropy depends on temperature T as: 
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In the following we apply the most frequently used approximation that heat capacity is temperature 
independent, i.e. Cp is the average value for the interval between Tg and T. Under this assumption the 
entropy of a melt in metastable equilibrium is becoming: 
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Eq.(51) together with Eq.(48) determines the dispersity as: 
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where the ”fragility” parameter α in stands for: 
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In terms of α,  Equs.(49) and (51-53) give: 
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pressure dependence of viscosity 



The entropy can be expressed by means of volume expansion coefficient 
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where Vm is the molar volume. An explicit form of the dependence of κ on P is needed to solve 
Eq.(57). Although there are no data in the literature, it is reasonable to assume that at extremely high 
pressures κ  will reduce in a somewhat inversely proportional to pressure P way, namely: 
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where Π is a constant and κο is the volume expansion coefficient at no pressure. In this case the 
solution of Eq. (57) leads to: 
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So that, for Po<<Π, the viscosity Eq. (51) yields: 
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or 
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Figure captions 
 
Fig.1 Viscosity of a standard soda-lime silicate glass NBS710. Solid points represent equilibrium 

viscosity. Non-equilibrium viscosity is given by the open points. 
 
Fig.2 Dependence of parameter α on average heat capacity. The solid line has a slope 0.1 
 
Fig.3 Temperature dependence of viscosity of silicates: �- (Na2O)0.25(SiO2)0.75 ; 

 !-  (PbO)0.4(SiO2)0.6 ; ∆ - (PbO)0.5(SiO2)0.5 ; B - (PbO)0.6(SiO2)0.4 
 
Fig.4  Composition ,x, dependence of parameter α. � - two-component silicates; !- three 

component silicates. A solid line with a slope equal to 6 is drawn. 
 



Fig.5   Pressure dependence of viscosity of OTP (orto therpenyl) at temperatures given as 
parameter at each curve. Solid lines are according to Eq.(41). 

 
Fig.6  The thin solid line represents the dependence of the jump frequency ν(E) on the activation 
energy (according to Eq.(14)). The dotted line is a schematic representation of the continuous 
distribution function ν(E). The product ν(E).ϕ (E) is presented by the thick solid line. 
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Fig.2 Dependence of parameter α on average heat capacity. The solid line has a slope 0.1 
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Fig.3 Temperature dependence of viscosity of silicates: �- (Na2O)0.25(SiO2)0.75 ; 
 !-  (PbO)0.4(SiO2)0.6 ; ∆ - (PbO)0.5(SiO2)0.5 ; B - (PbO)0.6(SiO2)0.4 
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Fig.4 Composition ,x, dependence of parameter α. � - two-component silicates; !- three 
component silicates. Solid line has a slope equal to 6. 
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Fig.5 Pressure dependence of viscosity of OTP (orto therpenyl) at temperatures given as 

parameter at each curve. Solid lines are according to Eq.(41). 
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Fig. 6 The thin solid line represents the dependence of the jump frequency ν(E) on the activation 
energy (according to Eq.(14)). The dotted line is a schematic representation of the continuous 

distribution function ν(E). The product ν(E). ϕ (E) is presented by the thick solid line. 
 


