Overall Crystallization Kinetics, Equation of
K olmogor ov, Johnson, Mehl, Avrami

Ovedl| cryddlization of a mdt is a complex process involving
smultaneous nucleation and growth of separate crysallites. It was first
described by Kolmogorov in 1937, Johnson and Mehl 1939; Avrami
1939,1940,1941.

KIJMA THEORY

General formulae
The main quantity to be determined in the theory of overal crystdlization is

the tota volume V. of crystalline phase, or equivaently, the fraction a° z—

of volume crysdlized till time t. In KIMA theory it is assumed that V,
results from nucleation of materia points at a rate J(t) (m>s®) which then
only expand in radid direction with growth rate G(t) (m/s)

At initiad moments there are no contacts between the growing crystals.
For that reason, at time t the volume V,(t',t) of any individud n-sized
crysdlite depends only on the earlier moment t'£ t of its nucleation
provided it is additiondly assumed that the crysadlites are isomorphic
during growth. The so-called extended volume Vg is given by:
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Vo is the whole crystalline volume that would have formed in the melt till
time t if there were no exhaustion of the initidl melt volume. To know V;
during the entire process we must extend the validity of the above equation
beyond the initial stage, so that the process can take place only in the non
crystaline volume V,-V,

Avrami has shown then:
da(t)=(1-a)da,, (2



a(t)=1- expl- a(t)] 3)
Since the crystals are assumed to keep their shape during growth,
geometricadly, a time t a given crydalite can be characterized by an
effective radius R which depends on the earlier moment t' of its formation.
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V,(t',t) = ¢,R® = ¢, acy3(t")at"g
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Herec,  (m™) is a shape factor.
Finally
BTN,
a(t)=1- expi - oJ( Jecse g dry
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This is the evolution of the crystalhzed fraction of the volume. It is
controlled by two basic parameters — the crysallite nucleation and growth
rates J and G

For G=const , and J=const

a(t) :1-exp§jcleGdtd+lg
2

The time t, for which a given degree of crystallinity X isreached is:
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Growth Shape Cu
1D Needle 2A,
2D Disk pH,
2D Square prism 4H,
3D Sohere 40/3
3D cube

A, — congtant cross section area of needle; H, constant thickness of the
prism




According to Kolmogorov a(t) can be interpreted as the
probability for crysalizing the mdt until time t after the onset of the
process. This means that the average timet,, for crystdlizing the melt is:

:%da(t):¥‘ ¢ Vv (t)

0

Knowing a(t) we can determine the number N(t) of
crystallites at ti me

)=V, - 2 (o =v, 3o

With N(t) the average volume V,, of crystallltes a the end of overdl
cyddlizationis.
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Derivation of Kolmogorov

Assumethat p(t)= V(t) IS the probability that a given point is

crystaline. The probablllty that a new crystaline nucleus
will be formed in amorphous part V'£V-V, during time Dt is
P=JV' D.

Large volume — i.e. we discuss points at a distance
larger than GDt from the surface of the sample

At timet an arbitrary chosen point will be inside a crysta
if at time tj <t in some other point a a distance r< G(t-t;)



a new crystal appears. The volume V' (t) insde which is
thispoint is;

V' (t,)=K(n)rt, =K(n)G"(t- t,)"
For sphere K(n)=4p/3; n=3
The probability P; that a nucleus is formed during time DX
involume V' is

P=Jv(4)O, =K(n)JG"(t- t, )"0

Remember: Always the reverse probability — the event
will not happen isimportant! g =1-P,
Let timet is separated to sintervals t=sDt

a)=0a =0 (1-R) ;where 1, =iD

For short Dt the p_robability P, issmall , therefore:
S S,
qt)=O (- Rr)=0¢"
i=1 i=1
Ing=-3 R =K(n)G"a [t -t)'D
Under the trangtion to infinitesmal time intervas Dt® dt

t
Inq(t):Knc‘ﬁ”J(t - t)'dt =- Ky G"Jt"
0

n-1
or

é K 4 U
a=l-epg —=G"Jt"
g n-1 u

In the case of athermal nucleation the power n is reduced
by 1 and instead J appears the number of athermal nucle
per unit volume.,

Therate of overal crystdlizationis:

_9alt) e gngnfr. 4]
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If relatively small grains are crystallizing from the surface
the problem is solved by Todes.

Non steady state effects:

1. t\ .
a(t) =1- expi- ¢, Yt )ecﬁ( )t

1 0

J must be taken into account

O C'

P
i; the time dependence of

Simplest approximation:
i0, for t<t
)=
1J fort>t

In this case the time necessary to reach a given degree of

aysalintyis & =L *t

The Avrami equation reads.

a:1-e><p(-Kt”):1- apggg

Q 0
Q1o

K=pG™J
Correspondingly, the characteritic time of the processis:
1

t=—F—

(pI)n G

The resuits on overal crydalization kinetics are, usualy, anayzed
in coordinates In (-In (1-a)) againg In t. However, the double
logarithmic  function exaggerates experimenta errors in  the
limiting cases: bothat a® O aswell asat a® 1.



New Coordinates a vs In t. An Sshaped curve, varying
between 0 and 1, appears.
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It is seen that the curve hasan extremum at  t=t, resp.
a=1-1/e=0.63.

The dope at this point is a’(t:t)=2=0.368n . This dope intercepts

abscissa at an onset point In t; . The intercept with a=1 gives the
end point of the process a In to. The parameter n is easly
determined by the difference

e
Int, -Int, =—
n
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a :1-exp{-cJt(Gt)dJ

N=Jt Gt® GtY?
N J
d t Jt t Jt
one 1 1/2 2 3/2
two 2 1 3 2
three 3 32 4 5/2




OSTWALD RIPENING

The Ostwald ripening process is best described by the
Lifshits-Syozov-Wagner model. It follows from the Thompson
Gibbs equation according to which solubility depends on the size
of crystal r as:
asV, 0
8 KTr o
This gives a thermodynamic driving force for transport of materia
from small crystas to large ones. If the diffuson is the dowest
process than the size of the average radius <r> has the following
time evolution:

=122~k (D)
r.in ﬂ
Here K accounts for the diffuson coefficient.
In order to have the sze didtribution function in an appropriate

form it is useful to introduce the dimensonless size r =—'—. The

C=C,exp

<r>
sze digribution function has the form:
()=r B3 SRS § o T 0oy 2
(r) r§3+r5§1.5- r g e>(pgl.S- rg @

According to the same mode, in the case when rate determining is
the kinetics of the reaction a the interface
(dissolution/incorporation) the two equations are:

>0 _ 3)

expgz_ :, r<?2 (4)

In order to compare the theory and experimenta data, the latter
must be renormdized to one. For this reason the number of each
class of the histogram should be divided to the overal number of



crystals. The didtribution curve could be also described by
Gaussion distribution.

The modd can take into account additional complications
like the influence of the volume of the ripening phase or the
coal escence of particles.

From Egs(1,3) one can determine K and plot it in Arrhenius
coordinates (if data at different temperatures are available) to
determine the activation energy.



