

Study of Foam Film Drainage via microinterferometric techniques

Plamen Tchoukov, Elena Mileva, Dotchi Exerowa

Partially supported by: Contract with EC "Nanoscale Phenomena and Structures in Bulk and Surface Phases" (NANOPHEN, № INCO-CT-2005-016696)

Contract with NSF "Colloid Aspects Of Nano-Science: Nanostructures At Interfaces, In Bulk And In Three-Phase-Contact Zone", module "Amphiphilic nanostructures in fluid media"

Aim

To outline the impact of amphiphlic self-assembled structures on the drainage of microscopic foam films from aqueous surfactant solutions

micelles

micelles

P. Mukerjee et al., 1958P. Stenius et al., 1975D. Exerowa et al., 1981M. Vold, 1987

premicelles

monomers

Motivation

Exerowa et al., J.Coll.Interf.Sci., 1981,81.

Experimental setup

Experimental conditions

Anionic surfactant SDS

➢ Surfactant Concentration:
✓ 2x10⁻⁶ ÷ 10⁻⁴ mol/l (0.5M NaCl)
➢ Electrolyte concentration :

✓ 0.5M NaCl > $C_{el,cr}$

SDS, 0.5M NaCl, t=22°C

Foam film kinetics: drainage time

Time? What does it depend on?

What does time depend on? - critical film thickness

Foam film kinetics: h(t)

Sheludko, *Adv.Coll.*&*Interface Sci.*, 1, 391, **1967** $=\frac{2h^3\Delta P}{3\eta R^2}$ $V_{\rm Re}$ $\Delta P = P_c - \Pi$ $\eta = 1.0 \times 10^{-3} (Pa.s)$ Radoev, Dimitrov, Ivanov, Coll&polymer Sci., <u>252</u>, 50, **1974** $\frac{dh}{dh}$ $\left|\frac{V_{Mob}}{V_{Re}} = 1 + b + \frac{h_S}{h}\right|$ $b = -\frac{3\eta D}{\Gamma_0 \left(\frac{\partial \sigma_0}{\partial c_0}\right)} \quad h_s = -\frac{6\eta D_s \left(\frac{\partial \Gamma_0}{\partial c_0}\right)}{\Gamma_0 \left(\frac{\partial \sigma_0}{\partial c_0}\right)}$ $V_{NH} = \frac{1}{6n} \sqrt[5]{\frac{h^{12} \Delta P^8}{4\sigma^3 R^4}}$ Manev, Tsekov, Radoev, J.Disp. Sci.&Technology, <u>18</u>, 769, **1997**

Our interpretation

Amphiphilic structures (premicelles) exist in initial surfactant solutions

➤Under the action of negative (van der Waals) disjoining pressure, the surfactant aggregates disintegrate, and the size distribution curve is shifted to the monomers. *Mileva E, Exerowa D, Colloids Surf. A 149, 207, (1999)*

$$\Pi(h) = \Pi_{vw}(h)$$

$$X_n(h < h_o) < X_n(h_o)$$

➢Films drain in a regime of high interfacial mobility and thickness inhomogeneities

Our interpretation

To summarize:

 Concentration coincidence of surface tension and the film drainage results is due to the presence of **amphiphilic structures** as coupled with the **local hydrodynamics** and **mass transfer of surfactant** molecules.