LECTURES: Crystallization and Relaxation of Dissordered Media

Relaxation and Crystallization of Glasses

 

1. Basic Thermodynamic Relations (introductory lecture of known facts)

1.1.1. First Postulate (equilibrium theorem)

1.1.2. Second Postulate (temperature)

1.1.3. At least one additional internal parameter is needed to describe a non-equilibrium system, fictive temperature

1.1.4. Entropy, free energy

1.1.5. Examples: Equilibrium conditions

1.1.6. Thermodynamics of Phase Transitions: Classification of Erenfest

1.1.7. Similarity and differences between Second order phase transition and glass transition

1.1.8. Thermodynamic driving forces for crystallization and for relaxation

 

2. Non-equilibrium Thermodynamics, Hydrodynamic approximation

2.1.1. Balance of mass and of entropy

2.1.2. Local equilibrium principle

 

3. Kinetic characteristics of glassforming melts; Viscosity

3.1.1. Empirical expression of VFT

3.1.2. Model of Adam & Gibbs

3.1.3. Jump frequency model

3.1.4. Strong and fragile glasses

 

4. Diffusion in Glasses

4.1.1. Percolation modeel

4.1.2. Monte Carlo Models of diffusion

 

5. Relaxation kinetics of glasses

5.1.1. Isothermal relaxation

5.1.2. Non isothermal relaxation; Equation of Ritland Bartenev

 

6. Thermodynamics of small phases. Equation of Thompson Gibbs

6.1.1. Specific Surface energy, Specific edge energy, Specific Vertex energy

6.1.2. Position of half crystal

6.1.3. Equilibrium form of crystals

 

7. Nucleation kinetics

7.1.1. Equation of Volmer

7.1.2. Becker and Doering equation

 

8. Kinetics of linear Crystal Growth

8.1.1. Two dimensional growth

8.1.2. Spiral Growth: Screw Dislocations, Radius of Frank

8.1.3. Normal Growth; Melting Kinetics

 

9. Overall Crystallization Kinetics; Equation of Kholmogorov Avrami

 

10. Conditions for Glass Formation

10.1.1. Phenomenological approach, Zachariazen model

10.1.2. TTT- curves

 

 

11. Crystallization of Glasses: Experiment and Theory

11.1.1. Activation energy for crystallization and for viscous flow

11.1.2. Rigid and Floppy Networks

 

12. Influence of Stress on Kinetics of Crystallization of Glasses

 

13. Interpretation of DSC, DTA and Photo Acoustic measurements (Can we listen how the molecules move)

13.1.1. Ozawa- Kissinger Plots

13.1.2. PA experiments

 

14. Relativistic Thermodynamics

14.1.1. Entropy invariance

14.1.2. Relativity transformations for Temperature and Heat

14.1.3. General Relativity Thermodynamics