PersonalPage_IM

Professor IVAN MARKOV, Ph.D., D.Sc.

 

Address:
Institute of Physical Chemistry
Bulgarian Academy of Sciences
bul. Acad. G. Bonchev, blok 11
Sofia 1113
Bulgaria

E-mail: imarkov@ipc.bas.bg

 

Books

 

EDUCATION

        1960 - 1966 University of Sofia, Department of Chemistry

 

DEGREES

       PhD in Chemical Physics (Kinetics of Electrolytic Nucleation), 1976, Institute of Physical Chemistry (IPC), Bulgarian Academy of Sciences (BAS), Sofia

       DSc in Chemical Physics (Theoretical Problems of Epitaxy), 1989, IPC, BAS, Sofia

 

PROFESIONAL CARRIER

     Institute Duties Period of Service
      IPC, BAS, Sofia Professor July 2000 –
      Universidad Autonoma de Madrid, Spain Guest Professor May – June 2000
      IPC, BAS, Sofia Professor 1999 – Apr 2000
      Universidad Autonoma de Madrid, Spain Guest Professor Jan 1998 – Feb 1999
      IPC, BAS, Sofia Professor  1994 - 1997
      Natl Tsing Hua Univ., Hsinchu, Taiwan Guest Professor June 1992 – May 1994
      IPC, BAS, Sofia Professor  1991 - 1992
      IPC, BAS, Sofia Assoc. Professor 1986 - 1990
      IPC, BAS, Sofia Assist. Professor 1969 - 1986

       

RESEARCH INTERESTS

       Main field: Nucleation, Crystal Growth, Epitaxy

       Current research interests: Surfactants in epitaxial growth, Quantum dots formation, Energetics of surfaces

 

TEACHING

  • "Formation and Growth of Crystals and Thin Epitaxial Films", University of Dresden, Germany, 20 hours, 1989.
  • "Fundamentals of Nucleation, Crystal Growth and Epitaxy", National Tsing Hua University, Hsinchu, Taiwan, 36 hours per semester, 1992, 1993.
  • "Fundamentals of Nucleation, Crystal Growth and Epitaxy", Universidad Autonoma de Madrid, Spain, 40 hours, 2000.
  • "Fundamentals of nucleation, crystal growth and epitaxy", Honk Kong University, 24 hours, 2004.
  • "Fundamentals of nucleation, crystal growth and epitaxy", Bulgarian Academy of Sciences, 24 hours, 2005.
  • "Critical Phenomena: Fundamentals of Nucleation, Crystal Growth and Epitaxy", Universidad Nacional de Educacion a Distancia, Madrid, Spain, 20 hours, 2006.

 

LECTURING

(i) International Schools:

  • International School on Technology, Characterization and Properties of Epitaxial Electronics Materials, January 13 - 24, 1986, Miramare, Trieste, Italy
  • International School on Materials and Applications for Solar Energy Conversion, October, 1986, Cairo, Egypt
  • International School on Crystal Growth and Characterization of Advanced Materials, December 1987, Havana, Cuba
  • School on Materials for Electronics, Growth, Properties and Applications, Nov. 18 - Dec. 6, 1991, Miramare, Trieste, Italy
  • International Summer Schools on Crystal Growth, Varna, Bulgaria, 1972, 1975, 1978, 1982, 1985, 1988.

 

(ii) International Conferences and Workshops:

  • International Workshop on “Models of Epitaxial Crystal Growth”, Dresden, Germany, 2002.
  • NATO ARW "Atomistic Aspects of Epitaxial Growth", Corfu, Greece, 2001.
  • NATO ARW "Collective Surface Diffusion Coefficients under Non-Equilibrium Conditions", Prague, Czech Republic, 2000.
  • Gordon Conference "Thin Films and Growth Mechanisms", Plymouth State College, 1999.
  • NATO ASI "Surface Diffusion: Atomistic and Collective Processes", Rhodes, Greece, 1996.
  • NATO ARW "Quantum Dots: Fundamentals, Applications and Frontiers", Crete, Greece, 2003.

 

(iii) Universities and Companies:

Technical University of Clausthal (Germany), University of Braunschweig (Germany), Central Electrochemical Research Institute (Karaikkudi, India), Polytechnic of Milan (Italy), Imperial College, London (UK), University of Sussex (Brighton, UK), University of Rochester, NY, SUNY at Buffalo, University of Syracuse, Cornell University, Kodak Co, (Rochester NY), National Tsing Hua University (Taiwan), Academia Sinica (Taiwan), University of Singapore, University of Hannover (Germany), Institut für Mikrostrukturphysik der Max-Planck-Ges., (Halle, Germany), Fritz-Haber-Institut der Max-Planck-Ges., Berlin (Germany), etc.; Hong Kong University, Chinese University of Hong Kong, Hong Kong University of Science and Technology, Universidad Nacional de Educacion a Distancia (Madrid, Spain), etc.

 

AWARDS

        Guest professor in National Tsing Hua University, Hsinchu, Taiwan, 1992-1994.

        Bulgarian National Award for Chemistry for 1996.

        Guest professor in Universidad Autonoma de Madrid, Spain, 1998, 2000.

 

PUBLICATIONS

        Number of papers in refereed journals: 60
        Number of communications to scientific meetings: 20
        Number of books: 1 + 2nd edition

 

I. Nucleation

I. 1. General

1. The Kinetics of Heterogeneous Nucleation, I. Markov, Thin Solid Films 6 (1970) 119-128.

2. The Influence of Surface Diffusion Processes on the Kinetics of New Phase Formation, I. Markov, Thin Solid Films 8 (1971) 281-292.

3. The Role of Active Centres in the Kinetics of New Phase Formation, I. Markov and D. Kashchiev, J. Cryst. Growth. 13/14 (1972) 131-134.

4. Nucleation on Active Centres. I. General Theory, I. Markov and D. Kashchiev, J. Cryst. Growth 16 (1972) 170-176.

5. The Effect of Substrate Inhomogeneity on the Kinetics of Heterogeneous Nucleation from Vapours, I. Markov and D. Kashchiev, Thin Solid Film 15 (1973) 181-189.

6. Crystallization of Amorphous CoSi2 Thin Films. I. Kinetics of Nucleation and Growth, J. M. Liang, L. J. Chen, I. Markov, K. N. Tu, G. U. Singco, L. T. Shi and C. Farrell, Materials Chemistry and Physics 38 (1994) 250.

 

I.2. Electrochemical Nucleation

1. Electrolytic Nucleation of Cadmium, S. Toschev and I. Markov, Electrohimica Acta 12 (1967) 281-286.

2. Transient Nucleation in Electrodeposition of Mercury, S. Toschev and I. Markov, J. Cryst. Growth. 3/4 (1968) 436-440.

3. An Experimental Study of Non Steady State Nucleation, S. Toschev and I. Markov, Ber. Bunsenges. Phys. Chem. 73 (1969) 184-188.

4. Electrolytic Nucleation of Silver in Aqueous Solutions and Fused Salts, S. Toschev, A. Milchev, K. Popova and I. Markov, C. R. l'Acad. Bulg. Sci. 22 (1969) 1413-1416.

5. Phase Formation Processes in the Electrolytic Deposition of Metals, R. Kaischew, S. Toschev and I. Markov, Commun. Dept. Chem., Bulg. Acad. Sci. 2 (1969) 463-472.

6. Screening Action and Growth Kinetics of Electrodeposited Mercury Droplets, I. Markov, A. Boynov and S. Toschev, Electrochimica Acta 18 (1973) 377-384.

7. Growth Kinetics and Screening Action of Mercury Droplets Electrodeposited from Dilute Solutions of the Electrolite, I. Markov and S. Toschev, Electrodeposition and Surface Treatment, 3 (1975) 385-397.

8. Saturation Nucleus Density in Electrodeposition of Metals onto Inert Electrodes. I. Theory, I. Markov, Thin Solid Films 35 (1976) 11-20.

9. Saturation Nucleus Density in Electrodeposition of Metals onto Inert Electrodes, II. Experimental, I. Markov and E. Stoycheva, Thin Solid Films 35 (1976) 21-35.

10. Initial Stages of Electrolytic Growth of Thin Metal Films, I. Markov, Proc. 28th ISE Meeting, Varna, 1977, p. 138.

 

II. Electrodeposition of AIIBVI Thin Films

1. Electrodeposition of CdTe in fused salt sulutions, I. Markov and M. Ilieva, Thin Solid Films 74 (1980) 109-115.

2. Electrodeposition of CdS Thin Films in Fused Salts, I. Markov, E. Valova, M. Ilieva and I. Kristev, C. R. l'Acad. Bulg. Sci. 35 (1982) 1089-1091.

3. Structure and Morphology of CdS Thin Films Electrodeposited in Fused Salts, I. Markov, E. Valova, M. Ilieva and I. Kristev, J. Cryst. Growth 65 (1983) 611-617.

4. Roentgenmikroanalytische und elektronenmikroskopische Charakterisierung duenner CdS Schichten, Th. Krajewski, I. Markov and M. Ilieva, Beitrage zur 7. Tagung "Mikrosonde", Dresden, 1988, p. 129-131.

5. Kathodolumineszenz (KL) Untersuhungen an CdS-Duennschichten, W. Erfurth, M. Ilieva und I. Markov, Beitrage zur 7. Tagung "Mikrosonde", Dresden, 1988, p. 259-261.

6. High temperature electrodeposition of CdS thin films on conductive glass substrates, M. Ilieva, D. Dimova-Malinovska, B. Ranguelov, and I. Markov, J. Phys.: Condens. Matter 11, 10025 (1999).

 

III. Epitaxial Growth

III.1. Structure Of Epitaxial Interfaces

1. On the Equilibrium Structure of Small Epitaxial Islands - One-dimensional Model, I. Markov and V. Karaivanov, Bulg. J. Phys. 5 (1978) 379-389.

2. One-dimensional Model of the Mobility of Small Epitaxial Islands. I. Parabolic Substrate Potential, I. Markov and V. Karaivanov, Thin Solid Films 61 (1979) 115-132.

3. One-dimensional Model of the Mobility of Small Epitaxial Islands, II. Sinusoidal Potential, I. Markov and V. Karaivanov, Thin Solid Films 65 (1980) 361-372.

4. On the Mobility of Small Epitaxial Islands - One-dimensional Model, I. Markov and V. Karaivanov, Growth and Properties of Metal Clusters, ed. J. Bourdon, Elsevier, 1980, p. 47-55.

5. The Effect of Anharmonicity in Epitaxial Interfaces, I. Substrate-Induced Dissociation of Finite Epitaxial Islands, A. Milchev and I. Markov, Surf. Sci. 136 (1984) 503-518.

6. The Effect of Anharmonicity in Epitaxial Interfaces, II. Equilibrium Structure of Thin Epitaxial Films, I. Markov and A. Milchev, Surf. Sci. 136 (1984) 519-531.

7. The Effect of Anharmonicity in Epitaxial Interfaces, III. Energy, Mean Dislocation Density and Mean Strain, I. Markov and A. Milchev, Surf. Sci. 145 (1984) 313-328.

8. The Effect of Realistic Forces in Finite Epitaxial Islands: Equilibrium Structure, Stability Limits and Substrate-induced dissociation of Migrating Clusters, A. Milchev and I. Markov, Surf. Sci. 156 (1985) 392-403.

9. Theory of Epitaxy in Frank-van der Merwe model with anharmonic interactions, I. Markov and A. Milchev, Thin Solid Films 126 (1985) 83-93.

10. Frank - van der Merwe Theory of Epitaxy with Anharmonic Interactions I. Markov and A. Milchev, in: Epitaxial Electronic Materials, eds. A. Balderesci and C. Paorici, World Scientific, Singapore, 1988, p. 56.

11. Epitaxial Interfaces with Realistic Interatomic Forces, I. Markov and A. Trayanov, J. Phys. C: Solid State Physics 21 (1988) 2475.

12. Accommodation of Misfit in Epitaxial Interfaces - Discrete Frenkel - Kontorova Model with Real Interatomic Forces, I. Markov and A. Trayanov, J. Phys. Condens. Matter 2 (1990) 6965.

13. Structure of Epitaxial Interfaces with Real Interatomic Forces, I. Markov and A. Trayanov, Crystal Properties and Preparation 32-34 (1991) 66.

14. Static Multikink Solutions in a Discrete Frenkel-Kontorova Model with Anharmonic Interactions, I. Markov, Phys. Rev. B 48 (1993) 14016.

15. Formation of Cracks in Epitaxial Overlayers, I. Markov and A. Trayanov, J. Crystal Growth 141 (1994) 239.

 

III.2. Mechanism of Epitaxial Growth

1. Influence of the Supersaturation on the Mode of Crystallization on Crystalline Substrates, I. Markov and R. Kaischew, Thin Solid Films 32 (1976) 163-167.

2. Influence of the Supersaturation on the Mode of Thin Film Growth, I. Markov and R. Kaischew, Kristall und Technik 11 (1976) 685-697.

3. On the 2D-3D Transition in Epitaxial Thin Film Growth, S. Stoyanov and I. Markov, Surf. Sci. 116 (1982) 313-337.

4. Growth of Thin Epitaxial Films, I. Markov, Electrochim. Acta, 28 (1983) 959-966.

5. Theory and Experiments in Epitaxial Growth, I. Markov, Materials Chemistry and Physics 9 (1983) 93-116.

6. Thermodynamic Aspects of Epitaxial Growth, R. Kaischew, I. Markov and S. Stoyanov, Proc. 31st International Congress of Pure and Applied Chemistry, Sofia, Bulgaria, Invited Lectures, Section 7 (Physical Chemistry), 1987, p. 93.

7. Mechanisms of Epitaxial Growth, I. Markov and S. Stoyanov, Contemporary Physics 28 (1987) 267-320.

8. Atomistic Aspects of Crystal Growth and Epitaxy, I. Markov, in: Crystal Growth and Characterization of Advanced Materials, eds. A. Christensen, F. Leccabue, C. Paorici, O. Vigil, World Scientific, Singapore, 1988, p. 119 - 168.

9. Growth of Thin Epitaxial Films, I. Markov, Proc. 1st Conf. Balkan Physical Union, Thessaloniki, Greece, 1991, p. 705-712.

10. Recent Theoretical Developments in Epitaxy, I. Markov, Materials Chemistry and Physics, 36 (1993) 1.

11. Kinetics of the MBE Growth of Si(001)2x1, I. Markov, Surf. Sci. 279 (1992) L207.

12. Electrolytic Epitaxial Nucleation and Growth of Copper on Ag(111), I. Markov, E. Stoycheva and D. Dobrev, Commun. Dept. Chem., Bulg. Acad. Sci. 11 (1978) 377-397.

 

III.3. Effect of Surfactants

1. Kinetics of Surfactant Mediated Epitaxial Growth, I. Markov, Phys. Rev. B 50 (1994) 11271.

2. Kinetics of Nucleation in Surfactant Mediated Homoepitaxy, I. Markov, Phys. Rev. B 53, 4148 (1996).

3. Influence of Surface Active Species on the Kinetics of Nucleation and Growth, I. Markov, Materials Chemistry and Physics 49, 93 (1997).

4. Scaling Behaviour of the Critical Terrace Width for Step-Flow Growth, I. Markov, Phys. Rev. B 59, 1689 (1999).

5. Kinetics of Nucleation and Growth in Surfactant Mediated Epitaxy, I. Markov, Thin Films and Phase Transitions on Surfaces, ed. M. Michailov, 1996, p.168.

6. Nucleation and Step-Flow Growth in Surfactant Mediated Homoeptaxy with Exchange/De-exchange Kinetics, I. Markov, Surf. Sci. 429, 102 (1999).

7. Surfactants in Semiconductor Heteroepitaxy: Thermodynamics and/or Kinetics? I. Markov, NATO ASI Series: “Collective diffusion on Surfaces: Correlation Effects and Adatom Interactions”, eds. M. Tringides and Z. Chvoj, (Kluwer, 2001), p. 259.

 

III. 4. Coherent Stranski-Krastanov Growth

1. Coherent Stranski-Krastanov growth in 1+1 dimensions with anharmonic interactions: An equilibrium study, E. Korutcheva, A. M. Turiel, I. Markov, Phys. Rev. B 61, 16890 (2000).

2. Dislocation-free 3D Islands in Highly Mismatched Epitaxy: An Equilibrium Study with Anharmonic Interactions, I. Markov and J. E. Prieto, NATO ASI Series “Atomistic aspects of Epitaxial Growth”, vol.65, eds. M. Kotrla, N. Papanicolaou, D. D. Vvedensky and L. T. Wille, (Kluwer, 2001), p.411.

3. Thermodynamic Driving Force of Formation of Coherent Three-Dimensional Islands in Stranski-Krastanov Growth, J. E. Prieto and I. Markov, Phys. Rev. B 66, 073408 (2002).

4. Some thermodynamic aspects of self-assembly of arrays of quantum dots, J. E. Prieto and I. Markov, NATO ASI Series "Quantum Dots: Fundamentals, Applications, Frontiers", ed. by D. D. Vvedensky, (Kluwer, 2003), p. 157.

5. Self-assembly of quantum dots: effect of neighbor islands on the wetting in coherent Stranski-Krastanov growth, J. E. Prieto and I. Markov, Phys. Rev. B 69, 193307 (2004).

6. Quantum dot nucleation in strained-layer epitaxy: Minimum energy pathway in stress-driven two-dimensional to three-dimensional transformation, J. E. Prieto and I. Markov, Phys. Rev. B 72, 205412 (2005).

7. Formation and self-assembly of coherent quantum dots: some thermodynamic aspects, J. E. Prieto, E. Koroutcheva and I. Markov, in "Quantum dots: Research developments", ed. by Peter A. Ling, Series "Horizons in World Physics", vol. 251, p. 123.

8. Forbidden Island Heights in Stress-Driven Coherent Stranski-Krastanov Growth, Jose Emilio Prieto, Ivan Markov, Physical Review Letters 98, 176101 (2007)

 

III. 5. Surface Energetics

1. Method for Evaluation of Ehrlich-Schwoebel Barrier to Interlayer Transport in Metal Homoepitaxy, I. Markov, Phys. Rev. B 54, 17930 (1996).

2. Surface Energetics from analysis of nucleation data in metal homoepitaxy, I. Markov, NATO ASI Series, Surface diffusion: Atomistic and Collective Processes, ed. M. Tringides, Plenum Press, 1996, p. 115.

3. Surface Energetics from the transition from step-flow growth to two-dimensional nucleation in metal homoepitaxy, I. Markov, Phys. Rev. B 56, 12 544 (1997).

4. Critical terrace width for step flow growth: Effect of attachment-detachment asymmetry and step permeability, B. Ranguelov, M. Altman, I. Markov, Phys. Rev. B 75, 245419 (2007)